Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing
Developing hydrogels with excellent 3D printability, injectability, and mechanical integrity presents an imposing challenge in biomaterials research, especially in the biomedical field where biocompatibility is crucial. This study involved the development of 3D printable and injectable polysaccharid...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2024-09, Vol.31 (14), p.8647-8662 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8662 |
---|---|
container_issue | 14 |
container_start_page | 8647 |
container_title | Cellulose (London) |
container_volume | 31 |
creator | Madani, Maryam Laurén, Isabella Borandeh, Sedigheh Gounani, Zahra Laaksonen, Timo Lindfors, Nina Seppälä, Jukka |
description | Developing hydrogels with excellent 3D printability, injectability, and mechanical integrity presents an imposing challenge in biomaterials research, especially in the biomedical field where biocompatibility is crucial. This study involved the development of 3D printable and injectable polysaccharide-based hydrogels with inherent self-healing capabilities. Carboxymethyl chitosan and quaternized chitosan (QCS) functioned as polymer backbones, reinforced by dialdehyde-cellulose nanocrystals (DACNC) as a cross-linker. Here, the concentrations of QCS and DACNC were adjusted and optimized for ideal performance. The cross-linking process was orchestrated in situ, integrating dynamic hydrogen bonds and Schiff base covalent bonds to achieve a multi-cross-linked hydrogel network. Comprehensive characterization of the material, including rheological measurements and macroscopic evaluations, demonstrated the hydrogel’s admirable injectability, printability, and self-healing attributes. In vitro cell viability assessments on human dermal fibroblasts revealed favorable biocompatibility and minimal cytotoxicity of the hydrogels, properties influenced by the concentrations of QCS. The obtained hydrogels exhibit promising attributes suitable for fabricating 3D printable and injectable hydrogel customized for biomedical applications, particularly wound healing.
Graphical abstract |
doi_str_mv | 10.1007/s10570-024-06117-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153814832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153814832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-fc549fb8c46a949d6c67b312f614e7ea90cc4e9da7bdf50734e678c620312acd3</originalsourceid><addsrcrecordid>eNp9kE9LwzAchoMoOKdfwFPBi5dq_jVpjjL8Mxh4UfAWsvTXrbNLtqRF9u1NV0Hw4Cn8yPO-8D4IXRN8RzCW95HgQuIcU55jQYjMDydoQgpJ87KkH6dogpVQ6Zupc3QR4wZjrCQlE9TM3QZsZ5YtZMZV2S40bryccd5C2_atj5Db4GNsG_cJVbbvTQfBmXDI7LrpfDQuSwlXxaz2Idv5DlzXmDb78n2qXINJwdUlOqtNG-Hq552i96fHt9lLvnh9ns8eFrmlUnZ5bQuu6mVpuTCKq0pYIZeM0FoQDhKMwtZyUJWRy6ousGQchCytoDhBxlZsim7H3l3w-x5ip7dNHIYYB76PmpGClYSXjCb05g-68X0a1g4UoaJQJVWJoiN1dBCg1knSNq3XBOvBvh7t62RfH-3rQwqxMRQHoysIv9X_pL4BHJmKvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112659829</pqid></control><display><type>article</type><title>Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing</title><source>Springer Nature - Complete Springer Journals</source><creator>Madani, Maryam ; Laurén, Isabella ; Borandeh, Sedigheh ; Gounani, Zahra ; Laaksonen, Timo ; Lindfors, Nina ; Seppälä, Jukka</creator><creatorcontrib>Madani, Maryam ; Laurén, Isabella ; Borandeh, Sedigheh ; Gounani, Zahra ; Laaksonen, Timo ; Lindfors, Nina ; Seppälä, Jukka</creatorcontrib><description>Developing hydrogels with excellent 3D printability, injectability, and mechanical integrity presents an imposing challenge in biomaterials research, especially in the biomedical field where biocompatibility is crucial. This study involved the development of 3D printable and injectable polysaccharide-based hydrogels with inherent self-healing capabilities. Carboxymethyl chitosan and quaternized chitosan (QCS) functioned as polymer backbones, reinforced by dialdehyde-cellulose nanocrystals (DACNC) as a cross-linker. Here, the concentrations of QCS and DACNC were adjusted and optimized for ideal performance. The cross-linking process was orchestrated in situ, integrating dynamic hydrogen bonds and Schiff base covalent bonds to achieve a multi-cross-linked hydrogel network. Comprehensive characterization of the material, including rheological measurements and macroscopic evaluations, demonstrated the hydrogel’s admirable injectability, printability, and self-healing attributes. In vitro cell viability assessments on human dermal fibroblasts revealed favorable biocompatibility and minimal cytotoxicity of the hydrogels, properties influenced by the concentrations of QCS. The obtained hydrogels exhibit promising attributes suitable for fabricating 3D printable and injectable hydrogel customized for biomedical applications, particularly wound healing.
Graphical abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-024-06117-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biocompatibility ; biocompatible materials ; Biomedical materials ; Bioorganic Chemistry ; cell viability ; cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Composites ; Covalent bonds ; Crosslinking ; cytotoxicity ; fibroblasts ; Glass ; humans ; Hydrogels ; hydrogen ; Hydrogen bonds ; Imines ; Injectability ; nanocrystals ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; polymers ; Polysaccharides ; Rheological properties ; schiff bases ; Sustainable Development ; Wound healing</subject><ispartof>Cellulose (London), 2024-09, Vol.31 (14), p.8647-8662</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-fc549fb8c46a949d6c67b312f614e7ea90cc4e9da7bdf50734e678c620312acd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-024-06117-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-024-06117-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Madani, Maryam</creatorcontrib><creatorcontrib>Laurén, Isabella</creatorcontrib><creatorcontrib>Borandeh, Sedigheh</creatorcontrib><creatorcontrib>Gounani, Zahra</creatorcontrib><creatorcontrib>Laaksonen, Timo</creatorcontrib><creatorcontrib>Lindfors, Nina</creatorcontrib><creatorcontrib>Seppälä, Jukka</creatorcontrib><title>Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Developing hydrogels with excellent 3D printability, injectability, and mechanical integrity presents an imposing challenge in biomaterials research, especially in the biomedical field where biocompatibility is crucial. This study involved the development of 3D printable and injectable polysaccharide-based hydrogels with inherent self-healing capabilities. Carboxymethyl chitosan and quaternized chitosan (QCS) functioned as polymer backbones, reinforced by dialdehyde-cellulose nanocrystals (DACNC) as a cross-linker. Here, the concentrations of QCS and DACNC were adjusted and optimized for ideal performance. The cross-linking process was orchestrated in situ, integrating dynamic hydrogen bonds and Schiff base covalent bonds to achieve a multi-cross-linked hydrogel network. Comprehensive characterization of the material, including rheological measurements and macroscopic evaluations, demonstrated the hydrogel’s admirable injectability, printability, and self-healing attributes. In vitro cell viability assessments on human dermal fibroblasts revealed favorable biocompatibility and minimal cytotoxicity of the hydrogels, properties influenced by the concentrations of QCS. The obtained hydrogels exhibit promising attributes suitable for fabricating 3D printable and injectable hydrogel customized for biomedical applications, particularly wound healing.
Graphical abstract</description><subject>Biocompatibility</subject><subject>biocompatible materials</subject><subject>Biomedical materials</subject><subject>Bioorganic Chemistry</subject><subject>cell viability</subject><subject>cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Composites</subject><subject>Covalent bonds</subject><subject>Crosslinking</subject><subject>cytotoxicity</subject><subject>fibroblasts</subject><subject>Glass</subject><subject>humans</subject><subject>Hydrogels</subject><subject>hydrogen</subject><subject>Hydrogen bonds</subject><subject>Imines</subject><subject>Injectability</subject><subject>nanocrystals</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>polymers</subject><subject>Polysaccharides</subject><subject>Rheological properties</subject><subject>schiff bases</subject><subject>Sustainable Development</subject><subject>Wound healing</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LwzAchoMoOKdfwFPBi5dq_jVpjjL8Mxh4UfAWsvTXrbNLtqRF9u1NV0Hw4Cn8yPO-8D4IXRN8RzCW95HgQuIcU55jQYjMDydoQgpJ87KkH6dogpVQ6Zupc3QR4wZjrCQlE9TM3QZsZ5YtZMZV2S40bryccd5C2_atj5Db4GNsG_cJVbbvTQfBmXDI7LrpfDQuSwlXxaz2Idv5DlzXmDb78n2qXINJwdUlOqtNG-Hq552i96fHt9lLvnh9ns8eFrmlUnZ5bQuu6mVpuTCKq0pYIZeM0FoQDhKMwtZyUJWRy6ousGQchCytoDhBxlZsim7H3l3w-x5ip7dNHIYYB76PmpGClYSXjCb05g-68X0a1g4UoaJQJVWJoiN1dBCg1knSNq3XBOvBvh7t62RfH-3rQwqxMRQHoysIv9X_pL4BHJmKvw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Madani, Maryam</creator><creator>Laurén, Isabella</creator><creator>Borandeh, Sedigheh</creator><creator>Gounani, Zahra</creator><creator>Laaksonen, Timo</creator><creator>Lindfors, Nina</creator><creator>Seppälä, Jukka</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240901</creationdate><title>Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing</title><author>Madani, Maryam ; Laurén, Isabella ; Borandeh, Sedigheh ; Gounani, Zahra ; Laaksonen, Timo ; Lindfors, Nina ; Seppälä, Jukka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-fc549fb8c46a949d6c67b312f614e7ea90cc4e9da7bdf50734e678c620312acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>biocompatible materials</topic><topic>Biomedical materials</topic><topic>Bioorganic Chemistry</topic><topic>cell viability</topic><topic>cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Composites</topic><topic>Covalent bonds</topic><topic>Crosslinking</topic><topic>cytotoxicity</topic><topic>fibroblasts</topic><topic>Glass</topic><topic>humans</topic><topic>Hydrogels</topic><topic>hydrogen</topic><topic>Hydrogen bonds</topic><topic>Imines</topic><topic>Injectability</topic><topic>nanocrystals</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>polymers</topic><topic>Polysaccharides</topic><topic>Rheological properties</topic><topic>schiff bases</topic><topic>Sustainable Development</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madani, Maryam</creatorcontrib><creatorcontrib>Laurén, Isabella</creatorcontrib><creatorcontrib>Borandeh, Sedigheh</creatorcontrib><creatorcontrib>Gounani, Zahra</creatorcontrib><creatorcontrib>Laaksonen, Timo</creatorcontrib><creatorcontrib>Lindfors, Nina</creatorcontrib><creatorcontrib>Seppälä, Jukka</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madani, Maryam</au><au>Laurén, Isabella</au><au>Borandeh, Sedigheh</au><au>Gounani, Zahra</au><au>Laaksonen, Timo</au><au>Lindfors, Nina</au><au>Seppälä, Jukka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>31</volume><issue>14</issue><spage>8647</spage><epage>8662</epage><pages>8647-8662</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Developing hydrogels with excellent 3D printability, injectability, and mechanical integrity presents an imposing challenge in biomaterials research, especially in the biomedical field where biocompatibility is crucial. This study involved the development of 3D printable and injectable polysaccharide-based hydrogels with inherent self-healing capabilities. Carboxymethyl chitosan and quaternized chitosan (QCS) functioned as polymer backbones, reinforced by dialdehyde-cellulose nanocrystals (DACNC) as a cross-linker. Here, the concentrations of QCS and DACNC were adjusted and optimized for ideal performance. The cross-linking process was orchestrated in situ, integrating dynamic hydrogen bonds and Schiff base covalent bonds to achieve a multi-cross-linked hydrogel network. Comprehensive characterization of the material, including rheological measurements and macroscopic evaluations, demonstrated the hydrogel’s admirable injectability, printability, and self-healing attributes. In vitro cell viability assessments on human dermal fibroblasts revealed favorable biocompatibility and minimal cytotoxicity of the hydrogels, properties influenced by the concentrations of QCS. The obtained hydrogels exhibit promising attributes suitable for fabricating 3D printable and injectable hydrogel customized for biomedical applications, particularly wound healing.
Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-024-06117-y</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2024-09, Vol.31 (14), p.8647-8662 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_miscellaneous_3153814832 |
source | Springer Nature - Complete Springer Journals |
subjects | Biocompatibility biocompatible materials Biomedical materials Bioorganic Chemistry cell viability cellulose Ceramics Chemistry Chemistry and Materials Science Chitosan Composites Covalent bonds Crosslinking cytotoxicity fibroblasts Glass humans Hydrogels hydrogen Hydrogen bonds Imines Injectability nanocrystals Natural Materials Organic Chemistry Original Research Physical Chemistry Polymer Sciences polymers Polysaccharides Rheological properties schiff bases Sustainable Development Wound healing |
title | Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injectable%20and%20printable%20nanocellulose-crosslinked%20quaternary%20chitosan%20blends%20for%20potential%20wound%20healing&rft.jtitle=Cellulose%20(London)&rft.au=Madani,%20Maryam&rft.date=2024-09-01&rft.volume=31&rft.issue=14&rft.spage=8647&rft.epage=8662&rft.pages=8647-8662&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-024-06117-y&rft_dat=%3Cproquest_cross%3E3153814832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112659829&rft_id=info:pmid/&rfr_iscdi=true |