Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing

Developing hydrogels with excellent 3D printability, injectability, and mechanical integrity presents an imposing challenge in biomaterials research, especially in the biomedical field where biocompatibility is crucial. This study involved the development of 3D printable and injectable polysaccharid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2024-09, Vol.31 (14), p.8647-8662
Hauptverfasser: Madani, Maryam, Laurén, Isabella, Borandeh, Sedigheh, Gounani, Zahra, Laaksonen, Timo, Lindfors, Nina, Seppälä, Jukka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8662
container_issue 14
container_start_page 8647
container_title Cellulose (London)
container_volume 31
creator Madani, Maryam
Laurén, Isabella
Borandeh, Sedigheh
Gounani, Zahra
Laaksonen, Timo
Lindfors, Nina
Seppälä, Jukka
description Developing hydrogels with excellent 3D printability, injectability, and mechanical integrity presents an imposing challenge in biomaterials research, especially in the biomedical field where biocompatibility is crucial. This study involved the development of 3D printable and injectable polysaccharide-based hydrogels with inherent self-healing capabilities. Carboxymethyl chitosan and quaternized chitosan (QCS) functioned as polymer backbones, reinforced by dialdehyde-cellulose nanocrystals (DACNC) as a cross-linker. Here, the concentrations of QCS and DACNC were adjusted and optimized for ideal performance. The cross-linking process was orchestrated in situ, integrating dynamic hydrogen bonds and Schiff base covalent bonds to achieve a multi-cross-linked hydrogel network. Comprehensive characterization of the material, including rheological measurements and macroscopic evaluations, demonstrated the hydrogel’s admirable injectability, printability, and self-healing attributes. In vitro cell viability assessments on human dermal fibroblasts revealed favorable biocompatibility and minimal cytotoxicity of the hydrogels, properties influenced by the concentrations of QCS. The obtained hydrogels exhibit promising attributes suitable for fabricating 3D printable and injectable hydrogel customized for biomedical applications, particularly wound healing. Graphical abstract
doi_str_mv 10.1007/s10570-024-06117-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153814832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153814832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-fc549fb8c46a949d6c67b312f614e7ea90cc4e9da7bdf50734e678c620312acd3</originalsourceid><addsrcrecordid>eNp9kE9LwzAchoMoOKdfwFPBi5dq_jVpjjL8Mxh4UfAWsvTXrbNLtqRF9u1NV0Hw4Cn8yPO-8D4IXRN8RzCW95HgQuIcU55jQYjMDydoQgpJ87KkH6dogpVQ6Zupc3QR4wZjrCQlE9TM3QZsZ5YtZMZV2S40bryccd5C2_atj5Db4GNsG_cJVbbvTQfBmXDI7LrpfDQuSwlXxaz2Idv5DlzXmDb78n2qXINJwdUlOqtNG-Hq552i96fHt9lLvnh9ns8eFrmlUnZ5bQuu6mVpuTCKq0pYIZeM0FoQDhKMwtZyUJWRy6ousGQchCytoDhBxlZsim7H3l3w-x5ip7dNHIYYB76PmpGClYSXjCb05g-68X0a1g4UoaJQJVWJoiN1dBCg1knSNq3XBOvBvh7t62RfH-3rQwqxMRQHoysIv9X_pL4BHJmKvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112659829</pqid></control><display><type>article</type><title>Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing</title><source>Springer Nature - Complete Springer Journals</source><creator>Madani, Maryam ; Laurén, Isabella ; Borandeh, Sedigheh ; Gounani, Zahra ; Laaksonen, Timo ; Lindfors, Nina ; Seppälä, Jukka</creator><creatorcontrib>Madani, Maryam ; Laurén, Isabella ; Borandeh, Sedigheh ; Gounani, Zahra ; Laaksonen, Timo ; Lindfors, Nina ; Seppälä, Jukka</creatorcontrib><description>Developing hydrogels with excellent 3D printability, injectability, and mechanical integrity presents an imposing challenge in biomaterials research, especially in the biomedical field where biocompatibility is crucial. This study involved the development of 3D printable and injectable polysaccharide-based hydrogels with inherent self-healing capabilities. Carboxymethyl chitosan and quaternized chitosan (QCS) functioned as polymer backbones, reinforced by dialdehyde-cellulose nanocrystals (DACNC) as a cross-linker. Here, the concentrations of QCS and DACNC were adjusted and optimized for ideal performance. The cross-linking process was orchestrated in situ, integrating dynamic hydrogen bonds and Schiff base covalent bonds to achieve a multi-cross-linked hydrogel network. Comprehensive characterization of the material, including rheological measurements and macroscopic evaluations, demonstrated the hydrogel’s admirable injectability, printability, and self-healing attributes. In vitro cell viability assessments on human dermal fibroblasts revealed favorable biocompatibility and minimal cytotoxicity of the hydrogels, properties influenced by the concentrations of QCS. The obtained hydrogels exhibit promising attributes suitable for fabricating 3D printable and injectable hydrogel customized for biomedical applications, particularly wound healing. Graphical abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-024-06117-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biocompatibility ; biocompatible materials ; Biomedical materials ; Bioorganic Chemistry ; cell viability ; cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Composites ; Covalent bonds ; Crosslinking ; cytotoxicity ; fibroblasts ; Glass ; humans ; Hydrogels ; hydrogen ; Hydrogen bonds ; Imines ; Injectability ; nanocrystals ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; polymers ; Polysaccharides ; Rheological properties ; schiff bases ; Sustainable Development ; Wound healing</subject><ispartof>Cellulose (London), 2024-09, Vol.31 (14), p.8647-8662</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-fc549fb8c46a949d6c67b312f614e7ea90cc4e9da7bdf50734e678c620312acd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-024-06117-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-024-06117-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Madani, Maryam</creatorcontrib><creatorcontrib>Laurén, Isabella</creatorcontrib><creatorcontrib>Borandeh, Sedigheh</creatorcontrib><creatorcontrib>Gounani, Zahra</creatorcontrib><creatorcontrib>Laaksonen, Timo</creatorcontrib><creatorcontrib>Lindfors, Nina</creatorcontrib><creatorcontrib>Seppälä, Jukka</creatorcontrib><title>Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Developing hydrogels with excellent 3D printability, injectability, and mechanical integrity presents an imposing challenge in biomaterials research, especially in the biomedical field where biocompatibility is crucial. This study involved the development of 3D printable and injectable polysaccharide-based hydrogels with inherent self-healing capabilities. Carboxymethyl chitosan and quaternized chitosan (QCS) functioned as polymer backbones, reinforced by dialdehyde-cellulose nanocrystals (DACNC) as a cross-linker. Here, the concentrations of QCS and DACNC were adjusted and optimized for ideal performance. The cross-linking process was orchestrated in situ, integrating dynamic hydrogen bonds and Schiff base covalent bonds to achieve a multi-cross-linked hydrogel network. Comprehensive characterization of the material, including rheological measurements and macroscopic evaluations, demonstrated the hydrogel’s admirable injectability, printability, and self-healing attributes. In vitro cell viability assessments on human dermal fibroblasts revealed favorable biocompatibility and minimal cytotoxicity of the hydrogels, properties influenced by the concentrations of QCS. The obtained hydrogels exhibit promising attributes suitable for fabricating 3D printable and injectable hydrogel customized for biomedical applications, particularly wound healing. Graphical abstract</description><subject>Biocompatibility</subject><subject>biocompatible materials</subject><subject>Biomedical materials</subject><subject>Bioorganic Chemistry</subject><subject>cell viability</subject><subject>cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Composites</subject><subject>Covalent bonds</subject><subject>Crosslinking</subject><subject>cytotoxicity</subject><subject>fibroblasts</subject><subject>Glass</subject><subject>humans</subject><subject>Hydrogels</subject><subject>hydrogen</subject><subject>Hydrogen bonds</subject><subject>Imines</subject><subject>Injectability</subject><subject>nanocrystals</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>polymers</subject><subject>Polysaccharides</subject><subject>Rheological properties</subject><subject>schiff bases</subject><subject>Sustainable Development</subject><subject>Wound healing</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LwzAchoMoOKdfwFPBi5dq_jVpjjL8Mxh4UfAWsvTXrbNLtqRF9u1NV0Hw4Cn8yPO-8D4IXRN8RzCW95HgQuIcU55jQYjMDydoQgpJ87KkH6dogpVQ6Zupc3QR4wZjrCQlE9TM3QZsZ5YtZMZV2S40bryccd5C2_atj5Db4GNsG_cJVbbvTQfBmXDI7LrpfDQuSwlXxaz2Idv5DlzXmDb78n2qXINJwdUlOqtNG-Hq552i96fHt9lLvnh9ns8eFrmlUnZ5bQuu6mVpuTCKq0pYIZeM0FoQDhKMwtZyUJWRy6ousGQchCytoDhBxlZsim7H3l3w-x5ip7dNHIYYB76PmpGClYSXjCb05g-68X0a1g4UoaJQJVWJoiN1dBCg1knSNq3XBOvBvh7t62RfH-3rQwqxMRQHoysIv9X_pL4BHJmKvw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Madani, Maryam</creator><creator>Laurén, Isabella</creator><creator>Borandeh, Sedigheh</creator><creator>Gounani, Zahra</creator><creator>Laaksonen, Timo</creator><creator>Lindfors, Nina</creator><creator>Seppälä, Jukka</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240901</creationdate><title>Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing</title><author>Madani, Maryam ; Laurén, Isabella ; Borandeh, Sedigheh ; Gounani, Zahra ; Laaksonen, Timo ; Lindfors, Nina ; Seppälä, Jukka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-fc549fb8c46a949d6c67b312f614e7ea90cc4e9da7bdf50734e678c620312acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>biocompatible materials</topic><topic>Biomedical materials</topic><topic>Bioorganic Chemistry</topic><topic>cell viability</topic><topic>cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Composites</topic><topic>Covalent bonds</topic><topic>Crosslinking</topic><topic>cytotoxicity</topic><topic>fibroblasts</topic><topic>Glass</topic><topic>humans</topic><topic>Hydrogels</topic><topic>hydrogen</topic><topic>Hydrogen bonds</topic><topic>Imines</topic><topic>Injectability</topic><topic>nanocrystals</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>polymers</topic><topic>Polysaccharides</topic><topic>Rheological properties</topic><topic>schiff bases</topic><topic>Sustainable Development</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madani, Maryam</creatorcontrib><creatorcontrib>Laurén, Isabella</creatorcontrib><creatorcontrib>Borandeh, Sedigheh</creatorcontrib><creatorcontrib>Gounani, Zahra</creatorcontrib><creatorcontrib>Laaksonen, Timo</creatorcontrib><creatorcontrib>Lindfors, Nina</creatorcontrib><creatorcontrib>Seppälä, Jukka</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madani, Maryam</au><au>Laurén, Isabella</au><au>Borandeh, Sedigheh</au><au>Gounani, Zahra</au><au>Laaksonen, Timo</au><au>Lindfors, Nina</au><au>Seppälä, Jukka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>31</volume><issue>14</issue><spage>8647</spage><epage>8662</epage><pages>8647-8662</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Developing hydrogels with excellent 3D printability, injectability, and mechanical integrity presents an imposing challenge in biomaterials research, especially in the biomedical field where biocompatibility is crucial. This study involved the development of 3D printable and injectable polysaccharide-based hydrogels with inherent self-healing capabilities. Carboxymethyl chitosan and quaternized chitosan (QCS) functioned as polymer backbones, reinforced by dialdehyde-cellulose nanocrystals (DACNC) as a cross-linker. Here, the concentrations of QCS and DACNC were adjusted and optimized for ideal performance. The cross-linking process was orchestrated in situ, integrating dynamic hydrogen bonds and Schiff base covalent bonds to achieve a multi-cross-linked hydrogel network. Comprehensive characterization of the material, including rheological measurements and macroscopic evaluations, demonstrated the hydrogel’s admirable injectability, printability, and self-healing attributes. In vitro cell viability assessments on human dermal fibroblasts revealed favorable biocompatibility and minimal cytotoxicity of the hydrogels, properties influenced by the concentrations of QCS. The obtained hydrogels exhibit promising attributes suitable for fabricating 3D printable and injectable hydrogel customized for biomedical applications, particularly wound healing. Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-024-06117-y</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2024-09, Vol.31 (14), p.8647-8662
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_miscellaneous_3153814832
source Springer Nature - Complete Springer Journals
subjects Biocompatibility
biocompatible materials
Biomedical materials
Bioorganic Chemistry
cell viability
cellulose
Ceramics
Chemistry
Chemistry and Materials Science
Chitosan
Composites
Covalent bonds
Crosslinking
cytotoxicity
fibroblasts
Glass
humans
Hydrogels
hydrogen
Hydrogen bonds
Imines
Injectability
nanocrystals
Natural Materials
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
polymers
Polysaccharides
Rheological properties
schiff bases
Sustainable Development
Wound healing
title Injectable and printable nanocellulose-crosslinked quaternary chitosan blends for potential wound healing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injectable%20and%20printable%20nanocellulose-crosslinked%20quaternary%20chitosan%20blends%20for%20potential%20wound%20healing&rft.jtitle=Cellulose%20(London)&rft.au=Madani,%20Maryam&rft.date=2024-09-01&rft.volume=31&rft.issue=14&rft.spage=8647&rft.epage=8662&rft.pages=8647-8662&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-024-06117-y&rft_dat=%3Cproquest_cross%3E3153814832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112659829&rft_id=info:pmid/&rfr_iscdi=true