Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation

Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2023-11, Vol.57 (45), p.17178-17188
Hauptverfasser: Chen, Du, Hu, Xiaohong, Chen, Chaohuang, Lin, Daohui, Xu, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17188
container_issue 45
container_start_page 17178
container_title Environmental science & technology
container_volume 57
creator Chen, Du
Hu, Xiaohong
Chen, Chaohuang
Lin, Daohui
Xu, Jiang
description Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure–property–activity relationships. The materials’ reactivity–selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements’ amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.
doi_str_mv 10.1021/acs.est.3c05129
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153812849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153812849</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-3f71488459d8bfb15b61d13514f6c613e9eb236b078d8ab6c8b48a444f03e28e3</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxYMoWKtnrwteBNmayVezRymtCkVRKnhbkt3ZkrJN6mbbv9-0FQQvnoY3_GaYN4-Qa6AjoAzuTRVHGPsRr6gEVpyQAUhGc6klnJIBpcDzgqvPc3IR44pSyjjVA_K2MK4NnfPLbIY0ezE-bEzXu6rFmO2cyeamTwqzqV86j3ggm9AlvXNd8Gv0vWmzd1xj7Uzvgr8kZ41pI1791CH5mE0Xk6d8_vr4PHmY54aB7HPejEFoLWRRa9tYkFZBDVyCaFSlgGOBlnFl6VjX2lhVaSu0EUI0lCPTyIfk9rh304WvbXJerl2ssG2Nx7CNJQfJNTAtin9Rlu5QY1lwltCbP-gqbDufjCSqAM2oOlB3Ryo9_RcAWu6TKPfN_eRPEvwbqdx7_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891820632</pqid></control><display><type>article</type><title>Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation</title><source>ACS Publications</source><creator>Chen, Du ; Hu, Xiaohong ; Chen, Chaohuang ; Lin, Daohui ; Xu, Jiang</creator><creatorcontrib>Chen, Du ; Hu, Xiaohong ; Chen, Chaohuang ; Lin, Daohui ; Xu, Jiang</creatorcontrib><description>Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure–property–activity relationships. The materials’ reactivity–selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements’ amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c05129</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>crystal structure ; Crystals ; Doping ; Electronic properties ; Engineering ; Environmental cleanup ; Environmental restoration ; geometry ; Lattice design ; Microenvironments ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Physicochemical properties ; Remediation ; Speciation ; Transition metals</subject><ispartof>Environmental science &amp; technology, 2023-11, Vol.57 (45), p.17178-17188</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 14, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0369-4848 ; 0000-0002-9662-7195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c05129$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c05129$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Chen, Du</creatorcontrib><creatorcontrib>Hu, Xiaohong</creatorcontrib><creatorcontrib>Chen, Chaohuang</creatorcontrib><creatorcontrib>Lin, Daohui</creatorcontrib><creatorcontrib>Xu, Jiang</creatorcontrib><title>Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure–property–activity relationships. The materials’ reactivity–selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements’ amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.</description><subject>crystal structure</subject><subject>Crystals</subject><subject>Doping</subject><subject>Electronic properties</subject><subject>Engineering</subject><subject>Environmental cleanup</subject><subject>Environmental restoration</subject><subject>geometry</subject><subject>Lattice design</subject><subject>Microenvironments</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Physicochemical properties</subject><subject>Remediation</subject><subject>Speciation</subject><subject>Transition metals</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LAzEQxYMoWKtnrwteBNmayVezRymtCkVRKnhbkt3ZkrJN6mbbv9-0FQQvnoY3_GaYN4-Qa6AjoAzuTRVHGPsRr6gEVpyQAUhGc6klnJIBpcDzgqvPc3IR44pSyjjVA_K2MK4NnfPLbIY0ezE-bEzXu6rFmO2cyeamTwqzqV86j3ggm9AlvXNd8Gv0vWmzd1xj7Uzvgr8kZ41pI1791CH5mE0Xk6d8_vr4PHmY54aB7HPejEFoLWRRa9tYkFZBDVyCaFSlgGOBlnFl6VjX2lhVaSu0EUI0lCPTyIfk9rh304WvbXJerl2ssG2Nx7CNJQfJNTAtin9Rlu5QY1lwltCbP-gqbDufjCSqAM2oOlB3Ryo9_RcAWu6TKPfN_eRPEvwbqdx7_w</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Chen, Du</creator><creator>Hu, Xiaohong</creator><creator>Chen, Chaohuang</creator><creator>Lin, Daohui</creator><creator>Xu, Jiang</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0369-4848</orcidid><orcidid>https://orcid.org/0000-0002-9662-7195</orcidid></search><sort><creationdate>20231114</creationdate><title>Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation</title><author>Chen, Du ; Hu, Xiaohong ; Chen, Chaohuang ; Lin, Daohui ; Xu, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-3f71488459d8bfb15b61d13514f6c613e9eb236b078d8ab6c8b48a444f03e28e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>crystal structure</topic><topic>Crystals</topic><topic>Doping</topic><topic>Electronic properties</topic><topic>Engineering</topic><topic>Environmental cleanup</topic><topic>Environmental restoration</topic><topic>geometry</topic><topic>Lattice design</topic><topic>Microenvironments</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Physicochemical properties</topic><topic>Remediation</topic><topic>Speciation</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Du</creatorcontrib><creatorcontrib>Hu, Xiaohong</creatorcontrib><creatorcontrib>Chen, Chaohuang</creatorcontrib><creatorcontrib>Lin, Daohui</creatorcontrib><creatorcontrib>Xu, Jiang</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Du</au><au>Hu, Xiaohong</au><au>Chen, Chaohuang</au><au>Lin, Daohui</au><au>Xu, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-11-14</date><risdate>2023</risdate><volume>57</volume><issue>45</issue><spage>17178</spage><epage>17188</epage><pages>17178-17188</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure–property–activity relationships. The materials’ reactivity–selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements’ amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.3c05129</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0369-4848</orcidid><orcidid>https://orcid.org/0000-0002-9662-7195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2023-11, Vol.57 (45), p.17178-17188
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_3153812849
source ACS Publications
subjects crystal structure
Crystals
Doping
Electronic properties
Engineering
Environmental cleanup
Environmental restoration
geometry
Lattice design
Microenvironments
Nanomaterials
Nanoparticles
Nanotechnology
Physicochemical properties
Remediation
Speciation
Transition metals
title Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Fe0%20Nanoparticles%20via%20Lattice%20Engineering%20for%20Environmental%20Remediation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Chen,%20Du&rft.date=2023-11-14&rft.volume=57&rft.issue=45&rft.spage=17178&rft.epage=17188&rft.pages=17178-17188&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c05129&rft_dat=%3Cproquest_acs_j%3E3153812849%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891820632&rft_id=info:pmid/&rfr_iscdi=true