Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation
Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy a...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2023-11, Vol.57 (45), p.17178-17188 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17188 |
---|---|
container_issue | 45 |
container_start_page | 17178 |
container_title | Environmental science & technology |
container_volume | 57 |
creator | Chen, Du Hu, Xiaohong Chen, Chaohuang Lin, Daohui Xu, Jiang |
description | Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure–property–activity relationships. The materials’ reactivity–selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements’ amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation. |
doi_str_mv | 10.1021/acs.est.3c05129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153812849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153812849</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-3f71488459d8bfb15b61d13514f6c613e9eb236b078d8ab6c8b48a444f03e28e3</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxYMoWKtnrwteBNmayVezRymtCkVRKnhbkt3ZkrJN6mbbv9-0FQQvnoY3_GaYN4-Qa6AjoAzuTRVHGPsRr6gEVpyQAUhGc6klnJIBpcDzgqvPc3IR44pSyjjVA_K2MK4NnfPLbIY0ezE-bEzXu6rFmO2cyeamTwqzqV86j3ggm9AlvXNd8Gv0vWmzd1xj7Uzvgr8kZ41pI1791CH5mE0Xk6d8_vr4PHmY54aB7HPejEFoLWRRa9tYkFZBDVyCaFSlgGOBlnFl6VjX2lhVaSu0EUI0lCPTyIfk9rh304WvbXJerl2ssG2Nx7CNJQfJNTAtin9Rlu5QY1lwltCbP-gqbDufjCSqAM2oOlB3Ryo9_RcAWu6TKPfN_eRPEvwbqdx7_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891820632</pqid></control><display><type>article</type><title>Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation</title><source>ACS Publications</source><creator>Chen, Du ; Hu, Xiaohong ; Chen, Chaohuang ; Lin, Daohui ; Xu, Jiang</creator><creatorcontrib>Chen, Du ; Hu, Xiaohong ; Chen, Chaohuang ; Lin, Daohui ; Xu, Jiang</creatorcontrib><description>Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure–property–activity relationships. The materials’ reactivity–selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements’ amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c05129</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>crystal structure ; Crystals ; Doping ; Electronic properties ; Engineering ; Environmental cleanup ; Environmental restoration ; geometry ; Lattice design ; Microenvironments ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Physicochemical properties ; Remediation ; Speciation ; Transition metals</subject><ispartof>Environmental science & technology, 2023-11, Vol.57 (45), p.17178-17188</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 14, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0369-4848 ; 0000-0002-9662-7195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c05129$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c05129$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Chen, Du</creatorcontrib><creatorcontrib>Hu, Xiaohong</creatorcontrib><creatorcontrib>Chen, Chaohuang</creatorcontrib><creatorcontrib>Lin, Daohui</creatorcontrib><creatorcontrib>Xu, Jiang</creatorcontrib><title>Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure–property–activity relationships. The materials’ reactivity–selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements’ amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.</description><subject>crystal structure</subject><subject>Crystals</subject><subject>Doping</subject><subject>Electronic properties</subject><subject>Engineering</subject><subject>Environmental cleanup</subject><subject>Environmental restoration</subject><subject>geometry</subject><subject>Lattice design</subject><subject>Microenvironments</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Physicochemical properties</subject><subject>Remediation</subject><subject>Speciation</subject><subject>Transition metals</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LAzEQxYMoWKtnrwteBNmayVezRymtCkVRKnhbkt3ZkrJN6mbbv9-0FQQvnoY3_GaYN4-Qa6AjoAzuTRVHGPsRr6gEVpyQAUhGc6klnJIBpcDzgqvPc3IR44pSyjjVA_K2MK4NnfPLbIY0ezE-bEzXu6rFmO2cyeamTwqzqV86j3ggm9AlvXNd8Gv0vWmzd1xj7Uzvgr8kZ41pI1791CH5mE0Xk6d8_vr4PHmY54aB7HPejEFoLWRRa9tYkFZBDVyCaFSlgGOBlnFl6VjX2lhVaSu0EUI0lCPTyIfk9rh304WvbXJerl2ssG2Nx7CNJQfJNTAtin9Rlu5QY1lwltCbP-gqbDufjCSqAM2oOlB3Ryo9_RcAWu6TKPfN_eRPEvwbqdx7_w</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Chen, Du</creator><creator>Hu, Xiaohong</creator><creator>Chen, Chaohuang</creator><creator>Lin, Daohui</creator><creator>Xu, Jiang</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0369-4848</orcidid><orcidid>https://orcid.org/0000-0002-9662-7195</orcidid></search><sort><creationdate>20231114</creationdate><title>Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation</title><author>Chen, Du ; Hu, Xiaohong ; Chen, Chaohuang ; Lin, Daohui ; Xu, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-3f71488459d8bfb15b61d13514f6c613e9eb236b078d8ab6c8b48a444f03e28e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>crystal structure</topic><topic>Crystals</topic><topic>Doping</topic><topic>Electronic properties</topic><topic>Engineering</topic><topic>Environmental cleanup</topic><topic>Environmental restoration</topic><topic>geometry</topic><topic>Lattice design</topic><topic>Microenvironments</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Physicochemical properties</topic><topic>Remediation</topic><topic>Speciation</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Du</creatorcontrib><creatorcontrib>Hu, Xiaohong</creatorcontrib><creatorcontrib>Chen, Chaohuang</creatorcontrib><creatorcontrib>Lin, Daohui</creatorcontrib><creatorcontrib>Xu, Jiang</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Du</au><au>Hu, Xiaohong</au><au>Chen, Chaohuang</au><au>Lin, Daohui</au><au>Xu, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-11-14</date><risdate>2023</risdate><volume>57</volume><issue>45</issue><spage>17178</spage><epage>17188</epage><pages>17178-17188</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure–property–activity relationships. The materials’ reactivity–selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements’ amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.3c05129</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0369-4848</orcidid><orcidid>https://orcid.org/0000-0002-9662-7195</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2023-11, Vol.57 (45), p.17178-17188 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153812849 |
source | ACS Publications |
subjects | crystal structure Crystals Doping Electronic properties Engineering Environmental cleanup Environmental restoration geometry Lattice design Microenvironments Nanomaterials Nanoparticles Nanotechnology Physicochemical properties Remediation Speciation Transition metals |
title | Tailoring Fe0 Nanoparticles via Lattice Engineering for Environmental Remediation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Fe0%20Nanoparticles%20via%20Lattice%20Engineering%20for%20Environmental%20Remediation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Chen,%20Du&rft.date=2023-11-14&rft.volume=57&rft.issue=45&rft.spage=17178&rft.epage=17188&rft.pages=17178-17188&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c05129&rft_dat=%3Cproquest_acs_j%3E3153812849%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891820632&rft_id=info:pmid/&rfr_iscdi=true |