Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium–Metal Electrode: The Case of LLZO|Li₆PS₅Cl and LLZO|Li₇P₃S
Developing solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-09, Vol.16 (40 p.54847-54863), p.54847-54863 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54863 |
---|---|
container_issue | 40 p.54847-54863 |
container_start_page | 54847 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Merola, Leonardo Singh, Vipin K Palmer, Max Eckhardt, Janis K. Benz, Sebastian L Fuchs, Till Nazar, L. F. (Linda F.) Sakamoto, Jeff Richter, Felix H. Janek, Jürgen |
description | Developing solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each SE are overcome by using layers of different SEs. However, research on inorganic SE₁|SE₂ heteroionic interfaces is still quite preliminary, especially regarding oxide|sulfide heteroionic interfaces. This work reports the electrochemical investigation of the heteroionic interface between Li₆.₂₅Al₀.₂₅La₃Zr₂O₁₂ (Al-LLZO) and two representative materials for sulfide-based SEs: argyrodite-based Li₆PS₅Cl (LPSCl) and glass-like Li₇P₃S₁₁ (LPS711). Through in-depth temperature- and pressure-dependent impedance analyses of multilayer symmetric cells at equilibrium (i.e., no current load), the electrical properties of the heteroionic interfaces are assessed. The pressure-dependent kinetic of the Al-LLZO|LPSCl pair is interpreted with the concept of geometric constriction resistance and show that its resistance is lower than for the Al-LLZO|LPS711 pair. Furthermore, the effect of Al-LLZO surface treatment on the electrical properties of the Al-LLZO|LPSCl heteroionic interface is evaluated. Such investigation shows that the value of the interface activation energy decreases when the Al-LLZO surface is heat treated, revealing a significant influence of the carbonate/hydroxide passivation layer on the heteroionic interface. Additionally, by cycling the symmetric cell for 900 h at 1.0 mAh·cm–², it is revealed that the Al-LLZO|LPSCl interface has a lower impedance increase than the Al-LLZO|LPS711 interface, especially if the Al-LLZO is heat treated. With this work, we highlight that the oxide|argyrodite combination can be a promising candidate for multilayer SSBs with an LME. However, we show that an optimized LLZO surface treatment and chemical analysis of the interface are recommended for future research. |
doi_str_mv | 10.1021/acsami.4c11597 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153810874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153810874</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_31538108743</originalsourceid><addsrcrecordid>eNqVjrtOw0AQRbcAifBoqaekcdj1gySUhKAgGSWSU9FEgz0mg9be4F2HIKVAQcAH8Ct8kb8EIyFRU52re25xhThWsqukr04xtVhwN0yViga9HdFRgzD0-n7k74l9ax-kPAt8GXXE12iFukbHpgSTw2TNGW2SWuctYUyOKtMqTuG6bHOOKUHi8I41u2fITQWXtCJtllzeQ2I0Z16rHcEFunbPZOGJ3QIQ4hZcF83L5w051DDSlLrKZHQOswXBEC39HIjj28km5mb7Pk2a7dtQA5bZX_sxbbavyaHYzVFbOvrlgTi5Gs2GY29ZmcearJsXbFPSGksytZ0HKgr6SvZ7YfCP6TdYSHAe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153810874</pqid></control><display><type>article</type><title>Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium–Metal Electrode: The Case of LLZO|Li₆PS₅Cl and LLZO|Li₇P₃S</title><source>ACS Publications</source><creator>Merola, Leonardo ; Singh, Vipin K ; Palmer, Max ; Eckhardt, Janis K. ; Benz, Sebastian L ; Fuchs, Till ; Nazar, L. F. (Linda F.) ; Sakamoto, Jeff ; Richter, Felix H. ; Janek, Jürgen</creator><creatorcontrib>Merola, Leonardo ; Singh, Vipin K ; Palmer, Max ; Eckhardt, Janis K. ; Benz, Sebastian L ; Fuchs, Till ; Nazar, L. F. (Linda F.) ; Sakamoto, Jeff ; Richter, Felix H. ; Janek, Jürgen</creatorcontrib><description>Developing solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each SE are overcome by using layers of different SEs. However, research on inorganic SE₁|SE₂ heteroionic interfaces is still quite preliminary, especially regarding oxide|sulfide heteroionic interfaces. This work reports the electrochemical investigation of the heteroionic interface between Li₆.₂₅Al₀.₂₅La₃Zr₂O₁₂ (Al-LLZO) and two representative materials for sulfide-based SEs: argyrodite-based Li₆PS₅Cl (LPSCl) and glass-like Li₇P₃S₁₁ (LPS711). Through in-depth temperature- and pressure-dependent impedance analyses of multilayer symmetric cells at equilibrium (i.e., no current load), the electrical properties of the heteroionic interfaces are assessed. The pressure-dependent kinetic of the Al-LLZO|LPSCl pair is interpreted with the concept of geometric constriction resistance and show that its resistance is lower than for the Al-LLZO|LPS711 pair. Furthermore, the effect of Al-LLZO surface treatment on the electrical properties of the Al-LLZO|LPSCl heteroionic interface is evaluated. Such investigation shows that the value of the interface activation energy decreases when the Al-LLZO surface is heat treated, revealing a significant influence of the carbonate/hydroxide passivation layer on the heteroionic interface. Additionally, by cycling the symmetric cell for 900 h at 1.0 mAh·cm–², it is revealed that the Al-LLZO|LPSCl interface has a lower impedance increase than the Al-LLZO|LPS711 interface, especially if the Al-LLZO is heat treated. With this work, we highlight that the oxide|argyrodite combination can be a promising candidate for multilayer SSBs with an LME. However, we show that an optimized LLZO surface treatment and chemical analysis of the interface are recommended for future research.</description><identifier>ISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c11597</identifier><language>eng</language><subject>activation energy ; carbonates ; chemical analysis ; electrochemistry ; electrodes ; electrolytes ; geometry ; heat ; lithium</subject><ispartof>ACS applied materials & interfaces, 2024-09, Vol.16 (40 p.54847-54863), p.54847-54863</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Merola, Leonardo</creatorcontrib><creatorcontrib>Singh, Vipin K</creatorcontrib><creatorcontrib>Palmer, Max</creatorcontrib><creatorcontrib>Eckhardt, Janis K.</creatorcontrib><creatorcontrib>Benz, Sebastian L</creatorcontrib><creatorcontrib>Fuchs, Till</creatorcontrib><creatorcontrib>Nazar, L. F. (Linda F.)</creatorcontrib><creatorcontrib>Sakamoto, Jeff</creatorcontrib><creatorcontrib>Richter, Felix H.</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><title>Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium–Metal Electrode: The Case of LLZO|Li₆PS₅Cl and LLZO|Li₇P₃S</title><title>ACS applied materials & interfaces</title><description>Developing solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each SE are overcome by using layers of different SEs. However, research on inorganic SE₁|SE₂ heteroionic interfaces is still quite preliminary, especially regarding oxide|sulfide heteroionic interfaces. This work reports the electrochemical investigation of the heteroionic interface between Li₆.₂₅Al₀.₂₅La₃Zr₂O₁₂ (Al-LLZO) and two representative materials for sulfide-based SEs: argyrodite-based Li₆PS₅Cl (LPSCl) and glass-like Li₇P₃S₁₁ (LPS711). Through in-depth temperature- and pressure-dependent impedance analyses of multilayer symmetric cells at equilibrium (i.e., no current load), the electrical properties of the heteroionic interfaces are assessed. The pressure-dependent kinetic of the Al-LLZO|LPSCl pair is interpreted with the concept of geometric constriction resistance and show that its resistance is lower than for the Al-LLZO|LPS711 pair. Furthermore, the effect of Al-LLZO surface treatment on the electrical properties of the Al-LLZO|LPSCl heteroionic interface is evaluated. Such investigation shows that the value of the interface activation energy decreases when the Al-LLZO surface is heat treated, revealing a significant influence of the carbonate/hydroxide passivation layer on the heteroionic interface. Additionally, by cycling the symmetric cell for 900 h at 1.0 mAh·cm–², it is revealed that the Al-LLZO|LPSCl interface has a lower impedance increase than the Al-LLZO|LPS711 interface, especially if the Al-LLZO is heat treated. With this work, we highlight that the oxide|argyrodite combination can be a promising candidate for multilayer SSBs with an LME. However, we show that an optimized LLZO surface treatment and chemical analysis of the interface are recommended for future research.</description><subject>activation energy</subject><subject>carbonates</subject><subject>chemical analysis</subject><subject>electrochemistry</subject><subject>electrodes</subject><subject>electrolytes</subject><subject>geometry</subject><subject>heat</subject><subject>lithium</subject><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjrtOw0AQRbcAifBoqaekcdj1gySUhKAgGSWSU9FEgz0mg9be4F2HIKVAQcAH8Ct8kb8EIyFRU52re25xhThWsqukr04xtVhwN0yViga9HdFRgzD0-n7k74l9ax-kPAt8GXXE12iFukbHpgSTw2TNGW2SWuctYUyOKtMqTuG6bHOOKUHi8I41u2fITQWXtCJtllzeQ2I0Z16rHcEFunbPZOGJ3QIQ4hZcF83L5w051DDSlLrKZHQOswXBEC39HIjj28km5mb7Pk2a7dtQA5bZX_sxbbavyaHYzVFbOvrlgTi5Gs2GY29ZmcearJsXbFPSGksytZ0HKgr6SvZ7YfCP6TdYSHAe</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Merola, Leonardo</creator><creator>Singh, Vipin K</creator><creator>Palmer, Max</creator><creator>Eckhardt, Janis K.</creator><creator>Benz, Sebastian L</creator><creator>Fuchs, Till</creator><creator>Nazar, L. F. (Linda F.)</creator><creator>Sakamoto, Jeff</creator><creator>Richter, Felix H.</creator><creator>Janek, Jürgen</creator><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240924</creationdate><title>Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium–Metal Electrode: The Case of LLZO|Li₆PS₅Cl and LLZO|Li₇P₃S</title><author>Merola, Leonardo ; Singh, Vipin K ; Palmer, Max ; Eckhardt, Janis K. ; Benz, Sebastian L ; Fuchs, Till ; Nazar, L. F. (Linda F.) ; Sakamoto, Jeff ; Richter, Felix H. ; Janek, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_31538108743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>activation energy</topic><topic>carbonates</topic><topic>chemical analysis</topic><topic>electrochemistry</topic><topic>electrodes</topic><topic>electrolytes</topic><topic>geometry</topic><topic>heat</topic><topic>lithium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merola, Leonardo</creatorcontrib><creatorcontrib>Singh, Vipin K</creatorcontrib><creatorcontrib>Palmer, Max</creatorcontrib><creatorcontrib>Eckhardt, Janis K.</creatorcontrib><creatorcontrib>Benz, Sebastian L</creatorcontrib><creatorcontrib>Fuchs, Till</creatorcontrib><creatorcontrib>Nazar, L. F. (Linda F.)</creatorcontrib><creatorcontrib>Sakamoto, Jeff</creatorcontrib><creatorcontrib>Richter, Felix H.</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merola, Leonardo</au><au>Singh, Vipin K</au><au>Palmer, Max</au><au>Eckhardt, Janis K.</au><au>Benz, Sebastian L</au><au>Fuchs, Till</au><au>Nazar, L. F. (Linda F.)</au><au>Sakamoto, Jeff</au><au>Richter, Felix H.</au><au>Janek, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium–Metal Electrode: The Case of LLZO|Li₆PS₅Cl and LLZO|Li₇P₃S</atitle><jtitle>ACS applied materials & interfaces</jtitle><date>2024-09-24</date><risdate>2024</risdate><volume>16</volume><issue>40 p.54847-54863</issue><spage>54847</spage><epage>54863</epage><pages>54847-54863</pages><issn>1944-8252</issn><abstract>Developing solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each SE are overcome by using layers of different SEs. However, research on inorganic SE₁|SE₂ heteroionic interfaces is still quite preliminary, especially regarding oxide|sulfide heteroionic interfaces. This work reports the electrochemical investigation of the heteroionic interface between Li₆.₂₅Al₀.₂₅La₃Zr₂O₁₂ (Al-LLZO) and two representative materials for sulfide-based SEs: argyrodite-based Li₆PS₅Cl (LPSCl) and glass-like Li₇P₃S₁₁ (LPS711). Through in-depth temperature- and pressure-dependent impedance analyses of multilayer symmetric cells at equilibrium (i.e., no current load), the electrical properties of the heteroionic interfaces are assessed. The pressure-dependent kinetic of the Al-LLZO|LPSCl pair is interpreted with the concept of geometric constriction resistance and show that its resistance is lower than for the Al-LLZO|LPS711 pair. Furthermore, the effect of Al-LLZO surface treatment on the electrical properties of the Al-LLZO|LPSCl heteroionic interface is evaluated. Such investigation shows that the value of the interface activation energy decreases when the Al-LLZO surface is heat treated, revealing a significant influence of the carbonate/hydroxide passivation layer on the heteroionic interface. Additionally, by cycling the symmetric cell for 900 h at 1.0 mAh·cm–², it is revealed that the Al-LLZO|LPSCl interface has a lower impedance increase than the Al-LLZO|LPS711 interface, especially if the Al-LLZO is heat treated. With this work, we highlight that the oxide|argyrodite combination can be a promising candidate for multilayer SSBs with an LME. However, we show that an optimized LLZO surface treatment and chemical analysis of the interface are recommended for future research.</abstract><doi>10.1021/acsami.4c11597</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8252 |
ispartof | ACS applied materials & interfaces, 2024-09, Vol.16 (40 p.54847-54863), p.54847-54863 |
issn | 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153810874 |
source | ACS Publications |
subjects | activation energy carbonates chemical analysis electrochemistry electrodes electrolytes geometry heat lithium |
title | Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium–Metal Electrode: The Case of LLZO|Li₆PS₅Cl and LLZO|Li₇P₃S |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Oxide%7CSulfide%20Heteroionic%20Interface%20Stability%20for%20Developing%20Solid-State%20Batteries%20with%20a%20Lithium%E2%80%93Metal%20Electrode:%20The%20Case%20of%20LLZO%7CLi%E2%82%86PS%E2%82%85Cl%20and%20LLZO%7CLi%E2%82%87P%E2%82%83S&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Merola,%20Leonardo&rft.date=2024-09-24&rft.volume=16&rft.issue=40%20p.54847-54863&rft.spage=54847&rft.epage=54863&rft.pages=54847-54863&rft.issn=1944-8252&rft_id=info:doi/10.1021/acsami.4c11597&rft_dat=%3Cproquest%3E3153810874%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153810874&rft_id=info:pmid/&rfr_iscdi=true |