The role of nickel in cadmium accumulation in rice
Rice is one of the world's staple foods. Cadmium (Cd) levels in paddy soil are still increasing, and “Cd-contaminated rice” is a frequent occurrence, posing a serious threat to human health. Therefore, Cd contamination in rice is a key issue in agricultural production that needs to be addressed...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-02, Vol.859 (Pt 2), p.160421-160421, Article 160421 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rice is one of the world's staple foods. Cadmium (Cd) levels in paddy soil are still increasing, and “Cd-contaminated rice” is a frequent occurrence, posing a serious threat to human health. Therefore, Cd contamination in rice is a key issue in agricultural production that needs to be addressed urgently. The Cd accumulation in rice is closely related to other elements. In this study, the impact of nickel (Ni) on the uptake and accumulation of Cd in rice was revealed, and the mechanism was discussed. Statistical analysis of field data showed that Cd concentration in rice grains decreased exponentially with increasing Ni concentration in paddy soils, which was verified by the hydroponic experiments. Under 5 μmol/L Cd exposure conditions, the addition of Ni (100 μmol/L) reduced the Cd contents in roots, stems, and leaves by 81.6 %, 60.6 %, and 65.9 %, respectively. With the presence of Ni, the amount of iron plaque decreased, and the Cd content in the iron plaque was reduced due to the competition between Ni and Cd for adsorption sites. In addition, the migration of Cd from stems to leaves was reduced. At the same time, the distribution of Cd in the cell was altered, and the concentration of Cd in the root cell walls increased with increasing Ni addition under 5 μmol/L Cd exposure. These findings highlight the critical role of Ni in inhibiting Cd accumulation in rice, and provide important information for understanding the effects of coexisting elements in Cd-contaminated soils on Cd accumulation in crops.
[Display omitted]
•The role of nickel (Ni) on cadmium (Cd) uptake and accumulation in rice was discovered.•The effect of Ni on the formation of iron plaque and the effect of iron plaque on Cd accumulation in rice were revealed.•The effect of Ni on the migration of Cd from roots to leaves was clarified.•The effect of Ni on the distribution of Cd in cells was revealed. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2022.160421 |