Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds

Marine cloud brightening (MCB) is a potential intervention to mitigate the effects of climate change by increasing the reflectance of low-level maritime clouds, including those over the Great Barrier Reef. The technique involves dispersing a plume of submicrometer seawater droplets over the ocean, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2023-12, Vol.57 (49), p.20559-20570
Hauptverfasser: Hernandez-Jaramillo, Diana C., Harrison, Luke, Kelaher, Brendan, Ristovski, Zoran, Harrison, Daniel P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20570
container_issue 49
container_start_page 20559
container_title Environmental science & technology
container_volume 57
creator Hernandez-Jaramillo, Diana C.
Harrison, Luke
Kelaher, Brendan
Ristovski, Zoran
Harrison, Daniel P.
description Marine cloud brightening (MCB) is a potential intervention to mitigate the effects of climate change by increasing the reflectance of low-level maritime clouds, including those over the Great Barrier Reef. The technique involves dispersing a plume of submicrometer seawater droplets over the ocean, which evaporate, generating nanosized sea-salt aerosols (SSAs) that disperse through the atmosphere with some fraction incorporated into clouds. Droplet evaporation, which occurs in the immediate vicinity (meters to tens of meters) of the source, has been theorized to produce a negatively buoyant plume hindering the mixing of the sea-salt aerosol to cloud height and compromising the effectiveness of MCB. We characterized in situ for the first time the nearfield aerosol dispersion from a point source of atomized seawater produced using the effervescent technique. We observed consistent vertical mixing of the plume up to 150 ± 5 m height at 1 km downwind. The extent of vertical dispersion was influenced by wind velocity and atmospheric stability. We found no evidence that negative buoyancy due to the evaporation of the 0.068 kg/s water fraction significantly suppressed vertical mixing. Our results can be attributed to the small droplet sizes generated by the effervescent spray technology and associated low flow rates required to generate around 1014 droplets s–1. We estimate that, for a hypothetical implementation producing up to 1016 s–1 similarly sized SSAs, evaporative cooling is unlikely to significantly suppress the vertical dispersion of aerosol for MCB.
doi_str_mv 10.1021/acs.est.3c04793
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153807648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153807648</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-525bb66b1bf9155cd39b8642a0517a4d8b4355edb04776d36005f5c4cfcc9c993</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa2qVVmg596QpV6QUJaxHSfxEZaFVkItEh_qLXKcMQRl42Ani_jvcbRbDpUQp7n83puZ9wj5zmDOgLNjbcIcwzAXBtJciU9kxiSHRBaSfSYzACYSJbK_O2Q3hEcA4AKKr2RHFMCUytMZ6Zdr3Tuvh2aNdOFc23T39MxhoL_dQK88rrEb6B36oTG6pWdN6NGHxnXUWbq0Fv0ag5mYa9TPekBPT9C74Fpqnaenvrl_GLCbXBetG-uwT75Y3Qb8tp175PZ8ebP4mVz-ufi1OLlMtFDpkEguqyrLKlZZxaQ0tVBVkaVcg2S5TuuiSoWUWFfx7zyrRQYgrTSpscYoo5TYI4cb3967pzFmVK6aeGjb6g7dGErBZEwhz9LiQ5QXSubAeZFF9Md_6KMbfRcfKbkCoQQXIo_U8YYyMYng0Za9b1bav5QMyqm3MvZWTuptb1FxsPUdqxXWb_y_oiJwtAEm5dvO9-xeAWQ5o0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903932337</pqid></control><display><type>article</type><title>Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds</title><source>ACS Publications</source><source>MEDLINE</source><creator>Hernandez-Jaramillo, Diana C. ; Harrison, Luke ; Kelaher, Brendan ; Ristovski, Zoran ; Harrison, Daniel P.</creator><creatorcontrib>Hernandez-Jaramillo, Diana C. ; Harrison, Luke ; Kelaher, Brendan ; Ristovski, Zoran ; Harrison, Daniel P.</creatorcontrib><description>Marine cloud brightening (MCB) is a potential intervention to mitigate the effects of climate change by increasing the reflectance of low-level maritime clouds, including those over the Great Barrier Reef. The technique involves dispersing a plume of submicrometer seawater droplets over the ocean, which evaporate, generating nanosized sea-salt aerosols (SSAs) that disperse through the atmosphere with some fraction incorporated into clouds. Droplet evaporation, which occurs in the immediate vicinity (meters to tens of meters) of the source, has been theorized to produce a negatively buoyant plume hindering the mixing of the sea-salt aerosol to cloud height and compromising the effectiveness of MCB. We characterized in situ for the first time the nearfield aerosol dispersion from a point source of atomized seawater produced using the effervescent technique. We observed consistent vertical mixing of the plume up to 150 ± 5 m height at 1 km downwind. The extent of vertical dispersion was influenced by wind velocity and atmospheric stability. We found no evidence that negative buoyancy due to the evaporation of the 0.068 kg/s water fraction significantly suppressed vertical mixing. Our results can be attributed to the small droplet sizes generated by the effervescent spray technology and associated low flow rates required to generate around 1014 droplets s–1. We estimate that, for a hypothetical implementation producing up to 1016 s–1 similarly sized SSAs, evaporative cooling is unlikely to significantly suppress the vertical dispersion of aerosol for MCB.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c04793</identifier><identifier>PMID: 38019974</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aerosols ; Aerosols - analysis ; Atmosphere ; atomization ; Atomizing ; Brightening ; Climate change ; Climate effects ; Clouds ; cooling ; Dispersion ; Droplets ; Energy and Climate ; environmental science ; Evaporation ; Evaporative cooling ; Flow rates ; Great Barrier Reef ; Low flow ; nanomaterials ; reflectance ; Seawater ; Water ; Wind ; Wind speed</subject><ispartof>Environmental science &amp; technology, 2023-12, Vol.57 (49), p.20559-20570</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 12, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-525bb66b1bf9155cd39b8642a0517a4d8b4355edb04776d36005f5c4cfcc9c993</citedby><cites>FETCH-LOGICAL-a394t-525bb66b1bf9155cd39b8642a0517a4d8b4355edb04776d36005f5c4cfcc9c993</cites><orcidid>0000-0002-0252-687X ; 0000-0002-7505-4412 ; 0000-0001-6066-6638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c04793$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c04793$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38019974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernandez-Jaramillo, Diana C.</creatorcontrib><creatorcontrib>Harrison, Luke</creatorcontrib><creatorcontrib>Kelaher, Brendan</creatorcontrib><creatorcontrib>Ristovski, Zoran</creatorcontrib><creatorcontrib>Harrison, Daniel P.</creatorcontrib><title>Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Marine cloud brightening (MCB) is a potential intervention to mitigate the effects of climate change by increasing the reflectance of low-level maritime clouds, including those over the Great Barrier Reef. The technique involves dispersing a plume of submicrometer seawater droplets over the ocean, which evaporate, generating nanosized sea-salt aerosols (SSAs) that disperse through the atmosphere with some fraction incorporated into clouds. Droplet evaporation, which occurs in the immediate vicinity (meters to tens of meters) of the source, has been theorized to produce a negatively buoyant plume hindering the mixing of the sea-salt aerosol to cloud height and compromising the effectiveness of MCB. We characterized in situ for the first time the nearfield aerosol dispersion from a point source of atomized seawater produced using the effervescent technique. We observed consistent vertical mixing of the plume up to 150 ± 5 m height at 1 km downwind. The extent of vertical dispersion was influenced by wind velocity and atmospheric stability. We found no evidence that negative buoyancy due to the evaporation of the 0.068 kg/s water fraction significantly suppressed vertical mixing. Our results can be attributed to the small droplet sizes generated by the effervescent spray technology and associated low flow rates required to generate around 1014 droplets s–1. We estimate that, for a hypothetical implementation producing up to 1016 s–1 similarly sized SSAs, evaporative cooling is unlikely to significantly suppress the vertical dispersion of aerosol for MCB.</description><subject>Aerosols</subject><subject>Aerosols - analysis</subject><subject>Atmosphere</subject><subject>atomization</subject><subject>Atomizing</subject><subject>Brightening</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Clouds</subject><subject>cooling</subject><subject>Dispersion</subject><subject>Droplets</subject><subject>Energy and Climate</subject><subject>environmental science</subject><subject>Evaporation</subject><subject>Evaporative cooling</subject><subject>Flow rates</subject><subject>Great Barrier Reef</subject><subject>Low flow</subject><subject>nanomaterials</subject><subject>reflectance</subject><subject>Seawater</subject><subject>Water</subject><subject>Wind</subject><subject>Wind speed</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1P3DAQxa2qVVmg596QpV6QUJaxHSfxEZaFVkItEh_qLXKcMQRl42Ani_jvcbRbDpUQp7n83puZ9wj5zmDOgLNjbcIcwzAXBtJciU9kxiSHRBaSfSYzACYSJbK_O2Q3hEcA4AKKr2RHFMCUytMZ6Zdr3Tuvh2aNdOFc23T39MxhoL_dQK88rrEb6B36oTG6pWdN6NGHxnXUWbq0Fv0ag5mYa9TPekBPT9C74Fpqnaenvrl_GLCbXBetG-uwT75Y3Qb8tp175PZ8ebP4mVz-ufi1OLlMtFDpkEguqyrLKlZZxaQ0tVBVkaVcg2S5TuuiSoWUWFfx7zyrRQYgrTSpscYoo5TYI4cb3967pzFmVK6aeGjb6g7dGErBZEwhz9LiQ5QXSubAeZFF9Md_6KMbfRcfKbkCoQQXIo_U8YYyMYng0Za9b1bav5QMyqm3MvZWTuptb1FxsPUdqxXWb_y_oiJwtAEm5dvO9-xeAWQ5o0o</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Hernandez-Jaramillo, Diana C.</creator><creator>Harrison, Luke</creator><creator>Kelaher, Brendan</creator><creator>Ristovski, Zoran</creator><creator>Harrison, Daniel P.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0252-687X</orcidid><orcidid>https://orcid.org/0000-0002-7505-4412</orcidid><orcidid>https://orcid.org/0000-0001-6066-6638</orcidid></search><sort><creationdate>20231212</creationdate><title>Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds</title><author>Hernandez-Jaramillo, Diana C. ; Harrison, Luke ; Kelaher, Brendan ; Ristovski, Zoran ; Harrison, Daniel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-525bb66b1bf9155cd39b8642a0517a4d8b4355edb04776d36005f5c4cfcc9c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Aerosols - analysis</topic><topic>Atmosphere</topic><topic>atomization</topic><topic>Atomizing</topic><topic>Brightening</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Clouds</topic><topic>cooling</topic><topic>Dispersion</topic><topic>Droplets</topic><topic>Energy and Climate</topic><topic>environmental science</topic><topic>Evaporation</topic><topic>Evaporative cooling</topic><topic>Flow rates</topic><topic>Great Barrier Reef</topic><topic>Low flow</topic><topic>nanomaterials</topic><topic>reflectance</topic><topic>Seawater</topic><topic>Water</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernandez-Jaramillo, Diana C.</creatorcontrib><creatorcontrib>Harrison, Luke</creatorcontrib><creatorcontrib>Kelaher, Brendan</creatorcontrib><creatorcontrib>Ristovski, Zoran</creatorcontrib><creatorcontrib>Harrison, Daniel P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernandez-Jaramillo, Diana C.</au><au>Harrison, Luke</au><au>Kelaher, Brendan</au><au>Ristovski, Zoran</au><au>Harrison, Daniel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-12-12</date><risdate>2023</risdate><volume>57</volume><issue>49</issue><spage>20559</spage><epage>20570</epage><pages>20559-20570</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Marine cloud brightening (MCB) is a potential intervention to mitigate the effects of climate change by increasing the reflectance of low-level maritime clouds, including those over the Great Barrier Reef. The technique involves dispersing a plume of submicrometer seawater droplets over the ocean, which evaporate, generating nanosized sea-salt aerosols (SSAs) that disperse through the atmosphere with some fraction incorporated into clouds. Droplet evaporation, which occurs in the immediate vicinity (meters to tens of meters) of the source, has been theorized to produce a negatively buoyant plume hindering the mixing of the sea-salt aerosol to cloud height and compromising the effectiveness of MCB. We characterized in situ for the first time the nearfield aerosol dispersion from a point source of atomized seawater produced using the effervescent technique. We observed consistent vertical mixing of the plume up to 150 ± 5 m height at 1 km downwind. The extent of vertical dispersion was influenced by wind velocity and atmospheric stability. We found no evidence that negative buoyancy due to the evaporation of the 0.068 kg/s water fraction significantly suppressed vertical mixing. Our results can be attributed to the small droplet sizes generated by the effervescent spray technology and associated low flow rates required to generate around 1014 droplets s–1. We estimate that, for a hypothetical implementation producing up to 1016 s–1 similarly sized SSAs, evaporative cooling is unlikely to significantly suppress the vertical dispersion of aerosol for MCB.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38019974</pmid><doi>10.1021/acs.est.3c04793</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0252-687X</orcidid><orcidid>https://orcid.org/0000-0002-7505-4412</orcidid><orcidid>https://orcid.org/0000-0001-6066-6638</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2023-12, Vol.57 (49), p.20559-20570
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_3153807648
source ACS Publications; MEDLINE
subjects Aerosols
Aerosols - analysis
Atmosphere
atomization
Atomizing
Brightening
Climate change
Climate effects
Clouds
cooling
Dispersion
Droplets
Energy and Climate
environmental science
Evaporation
Evaporative cooling
Flow rates
Great Barrier Reef
Low flow
nanomaterials
reflectance
Seawater
Water
Wind
Wind speed
title Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporative%20Cooling%20Does%20Not%20Prevent%20Vertical%20Dispersion%20of%20Effervescent%20Seawater%20Aerosol%20for%20Brightening%20Clouds&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Hernandez-Jaramillo,%20Diana%20C.&rft.date=2023-12-12&rft.volume=57&rft.issue=49&rft.spage=20559&rft.epage=20570&rft.pages=20559-20570&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c04793&rft_dat=%3Cproquest_cross%3E3153807648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903932337&rft_id=info:pmid/38019974&rfr_iscdi=true