Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds
Marine cloud brightening (MCB) is a potential intervention to mitigate the effects of climate change by increasing the reflectance of low-level maritime clouds, including those over the Great Barrier Reef. The technique involves dispersing a plume of submicrometer seawater droplets over the ocean, w...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2023-12, Vol.57 (49), p.20559-20570 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20570 |
---|---|
container_issue | 49 |
container_start_page | 20559 |
container_title | Environmental science & technology |
container_volume | 57 |
creator | Hernandez-Jaramillo, Diana C. Harrison, Luke Kelaher, Brendan Ristovski, Zoran Harrison, Daniel P. |
description | Marine cloud brightening (MCB) is a potential intervention to mitigate the effects of climate change by increasing the reflectance of low-level maritime clouds, including those over the Great Barrier Reef. The technique involves dispersing a plume of submicrometer seawater droplets over the ocean, which evaporate, generating nanosized sea-salt aerosols (SSAs) that disperse through the atmosphere with some fraction incorporated into clouds. Droplet evaporation, which occurs in the immediate vicinity (meters to tens of meters) of the source, has been theorized to produce a negatively buoyant plume hindering the mixing of the sea-salt aerosol to cloud height and compromising the effectiveness of MCB. We characterized in situ for the first time the nearfield aerosol dispersion from a point source of atomized seawater produced using the effervescent technique. We observed consistent vertical mixing of the plume up to 150 ± 5 m height at 1 km downwind. The extent of vertical dispersion was influenced by wind velocity and atmospheric stability. We found no evidence that negative buoyancy due to the evaporation of the 0.068 kg/s water fraction significantly suppressed vertical mixing. Our results can be attributed to the small droplet sizes generated by the effervescent spray technology and associated low flow rates required to generate around 1014 droplets s–1. We estimate that, for a hypothetical implementation producing up to 1016 s–1 similarly sized SSAs, evaporative cooling is unlikely to significantly suppress the vertical dispersion of aerosol for MCB. |
doi_str_mv | 10.1021/acs.est.3c04793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153807648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153807648</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-525bb66b1bf9155cd39b8642a0517a4d8b4355edb04776d36005f5c4cfcc9c993</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa2qVVmg596QpV6QUJaxHSfxEZaFVkItEh_qLXKcMQRl42Ani_jvcbRbDpUQp7n83puZ9wj5zmDOgLNjbcIcwzAXBtJciU9kxiSHRBaSfSYzACYSJbK_O2Q3hEcA4AKKr2RHFMCUytMZ6Zdr3Tuvh2aNdOFc23T39MxhoL_dQK88rrEb6B36oTG6pWdN6NGHxnXUWbq0Fv0ag5mYa9TPekBPT9C74Fpqnaenvrl_GLCbXBetG-uwT75Y3Qb8tp175PZ8ebP4mVz-ufi1OLlMtFDpkEguqyrLKlZZxaQ0tVBVkaVcg2S5TuuiSoWUWFfx7zyrRQYgrTSpscYoo5TYI4cb3967pzFmVK6aeGjb6g7dGErBZEwhz9LiQ5QXSubAeZFF9Md_6KMbfRcfKbkCoQQXIo_U8YYyMYng0Za9b1bav5QMyqm3MvZWTuptb1FxsPUdqxXWb_y_oiJwtAEm5dvO9-xeAWQ5o0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903932337</pqid></control><display><type>article</type><title>Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds</title><source>ACS Publications</source><source>MEDLINE</source><creator>Hernandez-Jaramillo, Diana C. ; Harrison, Luke ; Kelaher, Brendan ; Ristovski, Zoran ; Harrison, Daniel P.</creator><creatorcontrib>Hernandez-Jaramillo, Diana C. ; Harrison, Luke ; Kelaher, Brendan ; Ristovski, Zoran ; Harrison, Daniel P.</creatorcontrib><description>Marine cloud brightening (MCB) is a potential intervention to mitigate the effects of climate change by increasing the reflectance of low-level maritime clouds, including those over the Great Barrier Reef. The technique involves dispersing a plume of submicrometer seawater droplets over the ocean, which evaporate, generating nanosized sea-salt aerosols (SSAs) that disperse through the atmosphere with some fraction incorporated into clouds. Droplet evaporation, which occurs in the immediate vicinity (meters to tens of meters) of the source, has been theorized to produce a negatively buoyant plume hindering the mixing of the sea-salt aerosol to cloud height and compromising the effectiveness of MCB. We characterized in situ for the first time the nearfield aerosol dispersion from a point source of atomized seawater produced using the effervescent technique. We observed consistent vertical mixing of the plume up to 150 ± 5 m height at 1 km downwind. The extent of vertical dispersion was influenced by wind velocity and atmospheric stability. We found no evidence that negative buoyancy due to the evaporation of the 0.068 kg/s water fraction significantly suppressed vertical mixing. Our results can be attributed to the small droplet sizes generated by the effervescent spray technology and associated low flow rates required to generate around 1014 droplets s–1. We estimate that, for a hypothetical implementation producing up to 1016 s–1 similarly sized SSAs, evaporative cooling is unlikely to significantly suppress the vertical dispersion of aerosol for MCB.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c04793</identifier><identifier>PMID: 38019974</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aerosols ; Aerosols - analysis ; Atmosphere ; atomization ; Atomizing ; Brightening ; Climate change ; Climate effects ; Clouds ; cooling ; Dispersion ; Droplets ; Energy and Climate ; environmental science ; Evaporation ; Evaporative cooling ; Flow rates ; Great Barrier Reef ; Low flow ; nanomaterials ; reflectance ; Seawater ; Water ; Wind ; Wind speed</subject><ispartof>Environmental science & technology, 2023-12, Vol.57 (49), p.20559-20570</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 12, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-525bb66b1bf9155cd39b8642a0517a4d8b4355edb04776d36005f5c4cfcc9c993</citedby><cites>FETCH-LOGICAL-a394t-525bb66b1bf9155cd39b8642a0517a4d8b4355edb04776d36005f5c4cfcc9c993</cites><orcidid>0000-0002-0252-687X ; 0000-0002-7505-4412 ; 0000-0001-6066-6638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c04793$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c04793$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38019974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernandez-Jaramillo, Diana C.</creatorcontrib><creatorcontrib>Harrison, Luke</creatorcontrib><creatorcontrib>Kelaher, Brendan</creatorcontrib><creatorcontrib>Ristovski, Zoran</creatorcontrib><creatorcontrib>Harrison, Daniel P.</creatorcontrib><title>Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Marine cloud brightening (MCB) is a potential intervention to mitigate the effects of climate change by increasing the reflectance of low-level maritime clouds, including those over the Great Barrier Reef. The technique involves dispersing a plume of submicrometer seawater droplets over the ocean, which evaporate, generating nanosized sea-salt aerosols (SSAs) that disperse through the atmosphere with some fraction incorporated into clouds. Droplet evaporation, which occurs in the immediate vicinity (meters to tens of meters) of the source, has been theorized to produce a negatively buoyant plume hindering the mixing of the sea-salt aerosol to cloud height and compromising the effectiveness of MCB. We characterized in situ for the first time the nearfield aerosol dispersion from a point source of atomized seawater produced using the effervescent technique. We observed consistent vertical mixing of the plume up to 150 ± 5 m height at 1 km downwind. The extent of vertical dispersion was influenced by wind velocity and atmospheric stability. We found no evidence that negative buoyancy due to the evaporation of the 0.068 kg/s water fraction significantly suppressed vertical mixing. Our results can be attributed to the small droplet sizes generated by the effervescent spray technology and associated low flow rates required to generate around 1014 droplets s–1. We estimate that, for a hypothetical implementation producing up to 1016 s–1 similarly sized SSAs, evaporative cooling is unlikely to significantly suppress the vertical dispersion of aerosol for MCB.</description><subject>Aerosols</subject><subject>Aerosols - analysis</subject><subject>Atmosphere</subject><subject>atomization</subject><subject>Atomizing</subject><subject>Brightening</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Clouds</subject><subject>cooling</subject><subject>Dispersion</subject><subject>Droplets</subject><subject>Energy and Climate</subject><subject>environmental science</subject><subject>Evaporation</subject><subject>Evaporative cooling</subject><subject>Flow rates</subject><subject>Great Barrier Reef</subject><subject>Low flow</subject><subject>nanomaterials</subject><subject>reflectance</subject><subject>Seawater</subject><subject>Water</subject><subject>Wind</subject><subject>Wind speed</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1P3DAQxa2qVVmg596QpV6QUJaxHSfxEZaFVkItEh_qLXKcMQRl42Ani_jvcbRbDpUQp7n83puZ9wj5zmDOgLNjbcIcwzAXBtJciU9kxiSHRBaSfSYzACYSJbK_O2Q3hEcA4AKKr2RHFMCUytMZ6Zdr3Tuvh2aNdOFc23T39MxhoL_dQK88rrEb6B36oTG6pWdN6NGHxnXUWbq0Fv0ag5mYa9TPekBPT9C74Fpqnaenvrl_GLCbXBetG-uwT75Y3Qb8tp175PZ8ebP4mVz-ufi1OLlMtFDpkEguqyrLKlZZxaQ0tVBVkaVcg2S5TuuiSoWUWFfx7zyrRQYgrTSpscYoo5TYI4cb3967pzFmVK6aeGjb6g7dGErBZEwhz9LiQ5QXSubAeZFF9Md_6KMbfRcfKbkCoQQXIo_U8YYyMYng0Za9b1bav5QMyqm3MvZWTuptb1FxsPUdqxXWb_y_oiJwtAEm5dvO9-xeAWQ5o0o</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Hernandez-Jaramillo, Diana C.</creator><creator>Harrison, Luke</creator><creator>Kelaher, Brendan</creator><creator>Ristovski, Zoran</creator><creator>Harrison, Daniel P.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0252-687X</orcidid><orcidid>https://orcid.org/0000-0002-7505-4412</orcidid><orcidid>https://orcid.org/0000-0001-6066-6638</orcidid></search><sort><creationdate>20231212</creationdate><title>Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds</title><author>Hernandez-Jaramillo, Diana C. ; Harrison, Luke ; Kelaher, Brendan ; Ristovski, Zoran ; Harrison, Daniel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-525bb66b1bf9155cd39b8642a0517a4d8b4355edb04776d36005f5c4cfcc9c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Aerosols - analysis</topic><topic>Atmosphere</topic><topic>atomization</topic><topic>Atomizing</topic><topic>Brightening</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Clouds</topic><topic>cooling</topic><topic>Dispersion</topic><topic>Droplets</topic><topic>Energy and Climate</topic><topic>environmental science</topic><topic>Evaporation</topic><topic>Evaporative cooling</topic><topic>Flow rates</topic><topic>Great Barrier Reef</topic><topic>Low flow</topic><topic>nanomaterials</topic><topic>reflectance</topic><topic>Seawater</topic><topic>Water</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernandez-Jaramillo, Diana C.</creatorcontrib><creatorcontrib>Harrison, Luke</creatorcontrib><creatorcontrib>Kelaher, Brendan</creatorcontrib><creatorcontrib>Ristovski, Zoran</creatorcontrib><creatorcontrib>Harrison, Daniel P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernandez-Jaramillo, Diana C.</au><au>Harrison, Luke</au><au>Kelaher, Brendan</au><au>Ristovski, Zoran</au><au>Harrison, Daniel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-12-12</date><risdate>2023</risdate><volume>57</volume><issue>49</issue><spage>20559</spage><epage>20570</epage><pages>20559-20570</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Marine cloud brightening (MCB) is a potential intervention to mitigate the effects of climate change by increasing the reflectance of low-level maritime clouds, including those over the Great Barrier Reef. The technique involves dispersing a plume of submicrometer seawater droplets over the ocean, which evaporate, generating nanosized sea-salt aerosols (SSAs) that disperse through the atmosphere with some fraction incorporated into clouds. Droplet evaporation, which occurs in the immediate vicinity (meters to tens of meters) of the source, has been theorized to produce a negatively buoyant plume hindering the mixing of the sea-salt aerosol to cloud height and compromising the effectiveness of MCB. We characterized in situ for the first time the nearfield aerosol dispersion from a point source of atomized seawater produced using the effervescent technique. We observed consistent vertical mixing of the plume up to 150 ± 5 m height at 1 km downwind. The extent of vertical dispersion was influenced by wind velocity and atmospheric stability. We found no evidence that negative buoyancy due to the evaporation of the 0.068 kg/s water fraction significantly suppressed vertical mixing. Our results can be attributed to the small droplet sizes generated by the effervescent spray technology and associated low flow rates required to generate around 1014 droplets s–1. We estimate that, for a hypothetical implementation producing up to 1016 s–1 similarly sized SSAs, evaporative cooling is unlikely to significantly suppress the vertical dispersion of aerosol for MCB.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38019974</pmid><doi>10.1021/acs.est.3c04793</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0252-687X</orcidid><orcidid>https://orcid.org/0000-0002-7505-4412</orcidid><orcidid>https://orcid.org/0000-0001-6066-6638</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2023-12, Vol.57 (49), p.20559-20570 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153807648 |
source | ACS Publications; MEDLINE |
subjects | Aerosols Aerosols - analysis Atmosphere atomization Atomizing Brightening Climate change Climate effects Clouds cooling Dispersion Droplets Energy and Climate environmental science Evaporation Evaporative cooling Flow rates Great Barrier Reef Low flow nanomaterials reflectance Seawater Water Wind Wind speed |
title | Evaporative Cooling Does Not Prevent Vertical Dispersion of Effervescent Seawater Aerosol for Brightening Clouds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporative%20Cooling%20Does%20Not%20Prevent%20Vertical%20Dispersion%20of%20Effervescent%20Seawater%20Aerosol%20for%20Brightening%20Clouds&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Hernandez-Jaramillo,%20Diana%20C.&rft.date=2023-12-12&rft.volume=57&rft.issue=49&rft.spage=20559&rft.epage=20570&rft.pages=20559-20570&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c04793&rft_dat=%3Cproquest_cross%3E3153807648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903932337&rft_id=info:pmid/38019974&rfr_iscdi=true |