Application of multiplatform remote sensing data over East Asia Ocean: aerosol characteristics and aerosol types

It is important to explore the characteristics and rules of atmospheric aerosol in the East Asian Sea for monitoring and evaluating atmospheric environmental quality. Based on Aerosol Robot Network (AERONET), Visible Infrared Imaging Radiometer (VIIRS), and Cloud-Aerosol Lidar and Infrared Pathfinde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-05, Vol.31 (25), p.37175-37195
Hauptverfasser: Luan, Kuifeng, Cao, Zhaoxiang, Shen, Wei, Zhou, Peng, Qiu, Zhenge, Wan, Haixia, Wang, Zhenhua, Zhu, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37195
container_issue 25
container_start_page 37175
container_title Environmental science and pollution research international
container_volume 31
creator Luan, Kuifeng
Cao, Zhaoxiang
Shen, Wei
Zhou, Peng
Qiu, Zhenge
Wan, Haixia
Wang, Zhenhua
Zhu, Weidong
description It is important to explore the characteristics and rules of atmospheric aerosol in the East Asian Sea for monitoring and evaluating atmospheric environmental quality. Based on Aerosol Robot Network (AERONET), Visible Infrared Imaging Radiometer (VIIRS), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data, the temporal and spatial variation characteristics and differences of aerosol parameters and types in the East Asian Sea were studied by using figure classification method (FIGCM), aerosol optical depth (AOD) 440 -Angstrom exponent (AE) 440–870 method (AA1M), and AOD 550 -AE 490-670 method (AA2M). The results show that the seasonal variation trend of aerosol characteristics and types is obvious in East Asia Sea. AOD, volume concentration (Cv), and aerosol effective radius (reff) in the Bohai-Yellow Sea and the Sea of Japan in autumn are lower than those in other seasons, and the occurrence frequency of ocean-type aerosols is high. Different from the Bohai-Yellow Sea and Sea of Japan, human activities in winter, summer, and autumn seriously affect the air quality in the East China Sea and South China Sea. Especially at the Taipei CWB site, from aerosol parameters and high biomass burning/urban industrial (BB/UI) aerosol, human activity is an important factor for high pollution at the Taipei CWB site. Aerosol types of AA1M, FIGCM, AA2M, and CALIPSO were compared at Anmyon and Yonsei University sites in the Bohai-Yellow Sea in March 2020. The results show that aerosol types based on threshold classification methods generally have higher mixed aerosol results, and the marine (MA) results of AA1M, FIGCM, and AA2M are close to the clean marine aerosol results of CALIPSO. Comparing the results of AA 2 M and CALIPSO on a spatial scale, it is found that the clean marine aerosol proportion identified by CALIPSO (0.38, 0.48, 0.82) is consistent with the MA proportion identified by AA 2 M (0.43, 0.46, 0.97) in the East China Sea, South China Sea, and Western Pacific Ocean.
doi_str_mv 10.1007/s11356-024-33458-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153789341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057074303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2749-da95ec73be51ce82d7d8974280adc89abd2b46e355be038b8bc7daa90dedb5f23</originalsourceid><addsrcrecordid>eNqFkU1rFzEQhxdRbK1-AQ8S8OJlNa-bxNufUl-g0Iuew2wyW1N2N2uSFfrtjf5rFQ96msA885sMT9c9Z_Q1o1S_KYwJNfSUy14IqUxvH3SnbGCy19Lah3-8T7onpdxQyqnl-nF3IoweJDXDabcdtm2OHmpMK0kTWfa5xm2GOqW8kIxLqkgKriWu1yRABZK-YSYXUCo5lAjkyiOsbwlgTiXNxH-BDL5ijqVGXwis4b5XbzcsT7tHE8wFn93Vs-7zu4tP5x_6y6v3H88Pl73n7cd9AKvQazGiYh4NDzoYqyU3FII3FsbARzmgUGpEKsxoRq8DgKUBw6gmLs66V8fcLaevO5bqllg8zjOsmPbiBFNCGysk-z9KlaZaCioa-vIv9CbteW2HNGow1nIzmEbxI-Xb4SXj5LYcF8i3jlH3Q507qnNNnfupztk29OIueh8XDPcjv1w1QByB0lrrNebfu_8R-x25YaWb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068992868</pqid></control><display><type>article</type><title>Application of multiplatform remote sensing data over East Asia Ocean: aerosol characteristics and aerosol types</title><source>Springer Nature - Complete Springer Journals</source><creator>Luan, Kuifeng ; Cao, Zhaoxiang ; Shen, Wei ; Zhou, Peng ; Qiu, Zhenge ; Wan, Haixia ; Wang, Zhenhua ; Zhu, Weidong</creator><creatorcontrib>Luan, Kuifeng ; Cao, Zhaoxiang ; Shen, Wei ; Zhou, Peng ; Qiu, Zhenge ; Wan, Haixia ; Wang, Zhenhua ; Zhu, Weidong</creatorcontrib><description>It is important to explore the characteristics and rules of atmospheric aerosol in the East Asian Sea for monitoring and evaluating atmospheric environmental quality. Based on Aerosol Robot Network (AERONET), Visible Infrared Imaging Radiometer (VIIRS), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data, the temporal and spatial variation characteristics and differences of aerosol parameters and types in the East Asian Sea were studied by using figure classification method (FIGCM), aerosol optical depth (AOD) 440 -Angstrom exponent (AE) 440–870 method (AA1M), and AOD 550 -AE 490-670 method (AA2M). The results show that the seasonal variation trend of aerosol characteristics and types is obvious in East Asia Sea. AOD, volume concentration (Cv), and aerosol effective radius (reff) in the Bohai-Yellow Sea and the Sea of Japan in autumn are lower than those in other seasons, and the occurrence frequency of ocean-type aerosols is high. Different from the Bohai-Yellow Sea and Sea of Japan, human activities in winter, summer, and autumn seriously affect the air quality in the East China Sea and South China Sea. Especially at the Taipei CWB site, from aerosol parameters and high biomass burning/urban industrial (BB/UI) aerosol, human activity is an important factor for high pollution at the Taipei CWB site. Aerosol types of AA1M, FIGCM, AA2M, and CALIPSO were compared at Anmyon and Yonsei University sites in the Bohai-Yellow Sea in March 2020. The results show that aerosol types based on threshold classification methods generally have higher mixed aerosol results, and the marine (MA) results of AA1M, FIGCM, and AA2M are close to the clean marine aerosol results of CALIPSO. Comparing the results of AA 2 M and CALIPSO on a spatial scale, it is found that the clean marine aerosol proportion identified by CALIPSO (0.38, 0.48, 0.82) is consistent with the MA proportion identified by AA 2 M (0.43, 0.46, 0.97) in the East China Sea, South China Sea, and Western Pacific Ocean.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-024-33458-9</identifier><identifier>PMID: 38764086</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aerosols ; Air quality ; Aquatic Pollution ; Atmospheric aerosols ; Atmospheric Protection/Air Quality Control/Air Pollution ; Autumn ; biomass ; Biomass burning ; CALIPSO (Pathfinder satellite) ; Classification ; Earth and Environmental Science ; East Asia ; East China Sea ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental quality ; governmental programs and projects ; humans ; Imaging radiometers ; Infrared imaging ; Infrared radiometers ; Lidar ; Optical analysis ; Optical thickness ; Pacific Ocean ; Parameters ; pollution ; Radiometry ; Remote sensing ; Research Article ; Satellite observation ; satellites ; Sea of Japan ; seasonal variation ; Seasonal variations ; South China Sea ; Spatial variations ; summer ; Waste Water Technology ; Water Management ; Water Pollution Control ; winter</subject><ispartof>Environmental science and pollution research international, 2024-05, Vol.31 (25), p.37175-37195</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2749-da95ec73be51ce82d7d8974280adc89abd2b46e355be038b8bc7daa90dedb5f23</cites><orcidid>0000-0002-8161-341X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-024-33458-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-024-33458-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38764086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luan, Kuifeng</creatorcontrib><creatorcontrib>Cao, Zhaoxiang</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Qiu, Zhenge</creatorcontrib><creatorcontrib>Wan, Haixia</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Zhu, Weidong</creatorcontrib><title>Application of multiplatform remote sensing data over East Asia Ocean: aerosol characteristics and aerosol types</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>It is important to explore the characteristics and rules of atmospheric aerosol in the East Asian Sea for monitoring and evaluating atmospheric environmental quality. Based on Aerosol Robot Network (AERONET), Visible Infrared Imaging Radiometer (VIIRS), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data, the temporal and spatial variation characteristics and differences of aerosol parameters and types in the East Asian Sea were studied by using figure classification method (FIGCM), aerosol optical depth (AOD) 440 -Angstrom exponent (AE) 440–870 method (AA1M), and AOD 550 -AE 490-670 method (AA2M). The results show that the seasonal variation trend of aerosol characteristics and types is obvious in East Asia Sea. AOD, volume concentration (Cv), and aerosol effective radius (reff) in the Bohai-Yellow Sea and the Sea of Japan in autumn are lower than those in other seasons, and the occurrence frequency of ocean-type aerosols is high. Different from the Bohai-Yellow Sea and Sea of Japan, human activities in winter, summer, and autumn seriously affect the air quality in the East China Sea and South China Sea. Especially at the Taipei CWB site, from aerosol parameters and high biomass burning/urban industrial (BB/UI) aerosol, human activity is an important factor for high pollution at the Taipei CWB site. Aerosol types of AA1M, FIGCM, AA2M, and CALIPSO were compared at Anmyon and Yonsei University sites in the Bohai-Yellow Sea in March 2020. The results show that aerosol types based on threshold classification methods generally have higher mixed aerosol results, and the marine (MA) results of AA1M, FIGCM, and AA2M are close to the clean marine aerosol results of CALIPSO. Comparing the results of AA 2 M and CALIPSO on a spatial scale, it is found that the clean marine aerosol proportion identified by CALIPSO (0.38, 0.48, 0.82) is consistent with the MA proportion identified by AA 2 M (0.43, 0.46, 0.97) in the East China Sea, South China Sea, and Western Pacific Ocean.</description><subject>Aerosols</subject><subject>Air quality</subject><subject>Aquatic Pollution</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Autumn</subject><subject>biomass</subject><subject>Biomass burning</subject><subject>CALIPSO (Pathfinder satellite)</subject><subject>Classification</subject><subject>Earth and Environmental Science</subject><subject>East Asia</subject><subject>East China Sea</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental quality</subject><subject>governmental programs and projects</subject><subject>humans</subject><subject>Imaging radiometers</subject><subject>Infrared imaging</subject><subject>Infrared radiometers</subject><subject>Lidar</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Pacific Ocean</subject><subject>Parameters</subject><subject>pollution</subject><subject>Radiometry</subject><subject>Remote sensing</subject><subject>Research Article</subject><subject>Satellite observation</subject><subject>satellites</subject><subject>Sea of Japan</subject><subject>seasonal variation</subject><subject>Seasonal variations</subject><subject>South China Sea</subject><subject>Spatial variations</subject><subject>summer</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>winter</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFzEQhxdRbK1-AQ8S8OJlNa-bxNufUl-g0Iuew2wyW1N2N2uSFfrtjf5rFQ96msA885sMT9c9Z_Q1o1S_KYwJNfSUy14IqUxvH3SnbGCy19Lah3-8T7onpdxQyqnl-nF3IoweJDXDabcdtm2OHmpMK0kTWfa5xm2GOqW8kIxLqkgKriWu1yRABZK-YSYXUCo5lAjkyiOsbwlgTiXNxH-BDL5ijqVGXwis4b5XbzcsT7tHE8wFn93Vs-7zu4tP5x_6y6v3H88Pl73n7cd9AKvQazGiYh4NDzoYqyU3FII3FsbARzmgUGpEKsxoRq8DgKUBw6gmLs66V8fcLaevO5bqllg8zjOsmPbiBFNCGysk-z9KlaZaCioa-vIv9CbteW2HNGow1nIzmEbxI-Xb4SXj5LYcF8i3jlH3Q507qnNNnfupztk29OIueh8XDPcjv1w1QByB0lrrNebfu_8R-x25YaWb</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Luan, Kuifeng</creator><creator>Cao, Zhaoxiang</creator><creator>Shen, Wei</creator><creator>Zhou, Peng</creator><creator>Qiu, Zhenge</creator><creator>Wan, Haixia</creator><creator>Wang, Zhenhua</creator><creator>Zhu, Weidong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8161-341X</orcidid></search><sort><creationdate>20240501</creationdate><title>Application of multiplatform remote sensing data over East Asia Ocean: aerosol characteristics and aerosol types</title><author>Luan, Kuifeng ; Cao, Zhaoxiang ; Shen, Wei ; Zhou, Peng ; Qiu, Zhenge ; Wan, Haixia ; Wang, Zhenhua ; Zhu, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2749-da95ec73be51ce82d7d8974280adc89abd2b46e355be038b8bc7daa90dedb5f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerosols</topic><topic>Air quality</topic><topic>Aquatic Pollution</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Autumn</topic><topic>biomass</topic><topic>Biomass burning</topic><topic>CALIPSO (Pathfinder satellite)</topic><topic>Classification</topic><topic>Earth and Environmental Science</topic><topic>East Asia</topic><topic>East China Sea</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental quality</topic><topic>governmental programs and projects</topic><topic>humans</topic><topic>Imaging radiometers</topic><topic>Infrared imaging</topic><topic>Infrared radiometers</topic><topic>Lidar</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Pacific Ocean</topic><topic>Parameters</topic><topic>pollution</topic><topic>Radiometry</topic><topic>Remote sensing</topic><topic>Research Article</topic><topic>Satellite observation</topic><topic>satellites</topic><topic>Sea of Japan</topic><topic>seasonal variation</topic><topic>Seasonal variations</topic><topic>South China Sea</topic><topic>Spatial variations</topic><topic>summer</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luan, Kuifeng</creatorcontrib><creatorcontrib>Cao, Zhaoxiang</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Qiu, Zhenge</creatorcontrib><creatorcontrib>Wan, Haixia</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Zhu, Weidong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luan, Kuifeng</au><au>Cao, Zhaoxiang</au><au>Shen, Wei</au><au>Zhou, Peng</au><au>Qiu, Zhenge</au><au>Wan, Haixia</au><au>Wang, Zhenhua</au><au>Zhu, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of multiplatform remote sensing data over East Asia Ocean: aerosol characteristics and aerosol types</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>31</volume><issue>25</issue><spage>37175</spage><epage>37195</epage><pages>37175-37195</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>It is important to explore the characteristics and rules of atmospheric aerosol in the East Asian Sea for monitoring and evaluating atmospheric environmental quality. Based on Aerosol Robot Network (AERONET), Visible Infrared Imaging Radiometer (VIIRS), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data, the temporal and spatial variation characteristics and differences of aerosol parameters and types in the East Asian Sea were studied by using figure classification method (FIGCM), aerosol optical depth (AOD) 440 -Angstrom exponent (AE) 440–870 method (AA1M), and AOD 550 -AE 490-670 method (AA2M). The results show that the seasonal variation trend of aerosol characteristics and types is obvious in East Asia Sea. AOD, volume concentration (Cv), and aerosol effective radius (reff) in the Bohai-Yellow Sea and the Sea of Japan in autumn are lower than those in other seasons, and the occurrence frequency of ocean-type aerosols is high. Different from the Bohai-Yellow Sea and Sea of Japan, human activities in winter, summer, and autumn seriously affect the air quality in the East China Sea and South China Sea. Especially at the Taipei CWB site, from aerosol parameters and high biomass burning/urban industrial (BB/UI) aerosol, human activity is an important factor for high pollution at the Taipei CWB site. Aerosol types of AA1M, FIGCM, AA2M, and CALIPSO were compared at Anmyon and Yonsei University sites in the Bohai-Yellow Sea in March 2020. The results show that aerosol types based on threshold classification methods generally have higher mixed aerosol results, and the marine (MA) results of AA1M, FIGCM, and AA2M are close to the clean marine aerosol results of CALIPSO. Comparing the results of AA 2 M and CALIPSO on a spatial scale, it is found that the clean marine aerosol proportion identified by CALIPSO (0.38, 0.48, 0.82) is consistent with the MA proportion identified by AA 2 M (0.43, 0.46, 0.97) in the East China Sea, South China Sea, and Western Pacific Ocean.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38764086</pmid><doi>10.1007/s11356-024-33458-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8161-341X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-7499
ispartof Environmental science and pollution research international, 2024-05, Vol.31 (25), p.37175-37195
issn 1614-7499
0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_3153789341
source Springer Nature - Complete Springer Journals
subjects Aerosols
Air quality
Aquatic Pollution
Atmospheric aerosols
Atmospheric Protection/Air Quality Control/Air Pollution
Autumn
biomass
Biomass burning
CALIPSO (Pathfinder satellite)
Classification
Earth and Environmental Science
East Asia
East China Sea
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental quality
governmental programs and projects
humans
Imaging radiometers
Infrared imaging
Infrared radiometers
Lidar
Optical analysis
Optical thickness
Pacific Ocean
Parameters
pollution
Radiometry
Remote sensing
Research Article
Satellite observation
satellites
Sea of Japan
seasonal variation
Seasonal variations
South China Sea
Spatial variations
summer
Waste Water Technology
Water Management
Water Pollution Control
winter
title Application of multiplatform remote sensing data over East Asia Ocean: aerosol characteristics and aerosol types
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20multiplatform%20remote%20sensing%20data%20over%20East%20Asia%20Ocean:%20aerosol%20characteristics%20and%20aerosol%20types&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Luan,%20Kuifeng&rft.date=2024-05-01&rft.volume=31&rft.issue=25&rft.spage=37175&rft.epage=37195&rft.pages=37175-37195&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-024-33458-9&rft_dat=%3Cproquest_cross%3E3057074303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068992868&rft_id=info:pmid/38764086&rfr_iscdi=true