Late Oligocene to Pleistocene thermo-tectonic evolution of the Karakoram Fault Zone: New insights from basement and detrital apatite fission track thermochronology

The Karakoram Fault Zone displays distinctive topographic and tectonic characteristics, with intricate river drainage systems. Although there are extensive thermochronological datasets for the western Tibetan Plateau, limited investigations have been carried out to uncover the low-temperature therma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Palaeogeography, palaeoclimatology, palaeoecology palaeoclimatology, palaeoecology, 2024-07, Vol.645, p.112203, Article 112203
Hauptverfasser: Su, Wenbo, Cai, Keda, He, Zhiyuan, Zhao, Xinwei, Zhong, Hua, Glorie, Stijn, De Grave, Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112203
container_title Palaeogeography, palaeoclimatology, palaeoecology
container_volume 645
creator Su, Wenbo
Cai, Keda
He, Zhiyuan
Zhao, Xinwei
Zhong, Hua
Glorie, Stijn
De Grave, Johan
description The Karakoram Fault Zone displays distinctive topographic and tectonic characteristics, with intricate river drainage systems. Although there are extensive thermochronological datasets for the western Tibetan Plateau, limited investigations have been carried out to uncover the low-temperature thermal history of the Karakoram Fault Zone, which connects the Lhasa terrane with the Pamir. In this contribution, apatite fission track (AFT) thermochronology was conducted on 13 basement and 4 conglomerate samples collected from the western Gangdese batholith and the Ayi Mountain Range, on either side of the Karakoram fault. Inverse thermal history modeling results reveal that the western Gangdese batholith experienced two stages of rapid basement cooling at 27–23 Ma (late Oligocene-early Miocene) and 16–4 Ma (middle Miocene-Pliocene). The adjacent Ayi Mountain Range experienced cooling in the late Miocene (∼8 Ma) and during the Pliocene to Pleistocene (4–1 Ma). We suggest that tectonic forces associated with rollback and lateral break-off of the Indian continental lithosphere, and the dextral strike-slip activity of the Karakoram fault were responsible for the first cooling phase. The second accelerated cooling phase was due to the deep fragmentation of the Indian slab, the activity of the Karakoram normal fault, and associated ∼E-W extension. Additionally, since the late Oligocene, the Indus River incision has likely also contributed to the exhumation of the western Tibetan Plateau. Subsequently, the western Gangdese batholith reached high elevations, resulting in the reversal of the Yarlung River. The dextral-normal motion of the Karakoram fault, which is still active today, was the main cause of the Pliocene to Pleistocene accelerated cooling detected in the Ayi Mountain Range. •Two stages of late Cenozoic rapid cooling occurred in the north of the Karakoram Fault.•The south side of the Karakoram fault experienced Pliocene-Pleistocene rapid cooling.•A topographic inversion occurred in the Karakoram Fault Zone since the early Miocene.
doi_str_mv 10.1016/j.palaeo.2024.112203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153784567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031018224001925</els_id><sourcerecordid>3153784567</sourcerecordid><originalsourceid>FETCH-LOGICAL-a311t-fdcb27aa5008c9873a6312c8d79ea025a865833edad4dc917ae2c7d0209f52a33</originalsourceid><addsrcrecordid>eNp9kctuGzEMRYUiBeqk_YMutMxmHD08D2cRIAiaB2I0XbRA0Y3ASBxbjkZ0JTlFvqc_2jHG664IgvdegjyMfZZiLoVsLrbzHQRAmiuhFnMplRL6HZvJrlVVI5ufJ2wmhJaVkJ36wE5z3gohVKPVjP1dQUH-FPyaLEbkhfi3gD6XY7vBNFBV0BaK3nJ8pbAvniKn_jDkj5DghRIM_Bb2ofBfFPGSf8U_3Mfs15uSeZ9o4M-QccBYOETHHZbkCwQOOyh-3N_7nA-hJYF9OS61m0SRAq3fPrL3PYSMn471jP24_fL95r5aPd093FyvKtBSlqp39lm1ALUQnV12rYZGS2U71y4RhKqha-pOa3TgFs4uZQuobOuEEsu-VqD1GTufcneJfu8xFzP4bDEEiEj7bLSsddst6qYdpYtJahPlnLA3u-QHSG9GCnNgYrZmYmIOTMzEZLRdTTYcz3j1mEy2HqNF59P4YuPI_z_gH0crmxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153784567</pqid></control><display><type>article</type><title>Late Oligocene to Pleistocene thermo-tectonic evolution of the Karakoram Fault Zone: New insights from basement and detrital apatite fission track thermochronology</title><source>Elsevier ScienceDirect Journals</source><creator>Su, Wenbo ; Cai, Keda ; He, Zhiyuan ; Zhao, Xinwei ; Zhong, Hua ; Glorie, Stijn ; De Grave, Johan</creator><creatorcontrib>Su, Wenbo ; Cai, Keda ; He, Zhiyuan ; Zhao, Xinwei ; Zhong, Hua ; Glorie, Stijn ; De Grave, Johan</creatorcontrib><description>The Karakoram Fault Zone displays distinctive topographic and tectonic characteristics, with intricate river drainage systems. Although there are extensive thermochronological datasets for the western Tibetan Plateau, limited investigations have been carried out to uncover the low-temperature thermal history of the Karakoram Fault Zone, which connects the Lhasa terrane with the Pamir. In this contribution, apatite fission track (AFT) thermochronology was conducted on 13 basement and 4 conglomerate samples collected from the western Gangdese batholith and the Ayi Mountain Range, on either side of the Karakoram fault. Inverse thermal history modeling results reveal that the western Gangdese batholith experienced two stages of rapid basement cooling at 27–23 Ma (late Oligocene-early Miocene) and 16–4 Ma (middle Miocene-Pliocene). The adjacent Ayi Mountain Range experienced cooling in the late Miocene (∼8 Ma) and during the Pliocene to Pleistocene (4–1 Ma). We suggest that tectonic forces associated with rollback and lateral break-off of the Indian continental lithosphere, and the dextral strike-slip activity of the Karakoram fault were responsible for the first cooling phase. The second accelerated cooling phase was due to the deep fragmentation of the Indian slab, the activity of the Karakoram normal fault, and associated ∼E-W extension. Additionally, since the late Oligocene, the Indus River incision has likely also contributed to the exhumation of the western Tibetan Plateau. Subsequently, the western Gangdese batholith reached high elevations, resulting in the reversal of the Yarlung River. The dextral-normal motion of the Karakoram fault, which is still active today, was the main cause of the Pliocene to Pleistocene accelerated cooling detected in the Ayi Mountain Range. •Two stages of late Cenozoic rapid cooling occurred in the north of the Karakoram Fault.•The south side of the Karakoram fault experienced Pliocene-Pleistocene rapid cooling.•A topographic inversion occurred in the Karakoram Fault Zone since the early Miocene.</description><identifier>ISSN: 0031-0182</identifier><identifier>EISSN: 1872-616X</identifier><identifier>DOI: 10.1016/j.palaeo.2024.112203</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>apatite ; Apatite fission track thermochronology ; China ; data collection ; drainage ; evolution ; Exhumation ; Indus River ; Karakoram Fault Zone ; Late Cenozoic ; Miocene epoch ; mountains ; Oligocene epoch ; palaeogeography ; paleoclimatology ; paleoecology ; Pleistocene epoch ; Pliocene epoch ; rivers ; tectonics ; thermochronology ; topography ; Western Tibetan Plateau</subject><ispartof>Palaeogeography, palaeoclimatology, palaeoecology, 2024-07, Vol.645, p.112203, Article 112203</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a311t-fdcb27aa5008c9873a6312c8d79ea025a865833edad4dc917ae2c7d0209f52a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.palaeo.2024.112203$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Su, Wenbo</creatorcontrib><creatorcontrib>Cai, Keda</creatorcontrib><creatorcontrib>He, Zhiyuan</creatorcontrib><creatorcontrib>Zhao, Xinwei</creatorcontrib><creatorcontrib>Zhong, Hua</creatorcontrib><creatorcontrib>Glorie, Stijn</creatorcontrib><creatorcontrib>De Grave, Johan</creatorcontrib><title>Late Oligocene to Pleistocene thermo-tectonic evolution of the Karakoram Fault Zone: New insights from basement and detrital apatite fission track thermochronology</title><title>Palaeogeography, palaeoclimatology, palaeoecology</title><description>The Karakoram Fault Zone displays distinctive topographic and tectonic characteristics, with intricate river drainage systems. Although there are extensive thermochronological datasets for the western Tibetan Plateau, limited investigations have been carried out to uncover the low-temperature thermal history of the Karakoram Fault Zone, which connects the Lhasa terrane with the Pamir. In this contribution, apatite fission track (AFT) thermochronology was conducted on 13 basement and 4 conglomerate samples collected from the western Gangdese batholith and the Ayi Mountain Range, on either side of the Karakoram fault. Inverse thermal history modeling results reveal that the western Gangdese batholith experienced two stages of rapid basement cooling at 27–23 Ma (late Oligocene-early Miocene) and 16–4 Ma (middle Miocene-Pliocene). The adjacent Ayi Mountain Range experienced cooling in the late Miocene (∼8 Ma) and during the Pliocene to Pleistocene (4–1 Ma). We suggest that tectonic forces associated with rollback and lateral break-off of the Indian continental lithosphere, and the dextral strike-slip activity of the Karakoram fault were responsible for the first cooling phase. The second accelerated cooling phase was due to the deep fragmentation of the Indian slab, the activity of the Karakoram normal fault, and associated ∼E-W extension. Additionally, since the late Oligocene, the Indus River incision has likely also contributed to the exhumation of the western Tibetan Plateau. Subsequently, the western Gangdese batholith reached high elevations, resulting in the reversal of the Yarlung River. The dextral-normal motion of the Karakoram fault, which is still active today, was the main cause of the Pliocene to Pleistocene accelerated cooling detected in the Ayi Mountain Range. •Two stages of late Cenozoic rapid cooling occurred in the north of the Karakoram Fault.•The south side of the Karakoram fault experienced Pliocene-Pleistocene rapid cooling.•A topographic inversion occurred in the Karakoram Fault Zone since the early Miocene.</description><subject>apatite</subject><subject>Apatite fission track thermochronology</subject><subject>China</subject><subject>data collection</subject><subject>drainage</subject><subject>evolution</subject><subject>Exhumation</subject><subject>Indus River</subject><subject>Karakoram Fault Zone</subject><subject>Late Cenozoic</subject><subject>Miocene epoch</subject><subject>mountains</subject><subject>Oligocene epoch</subject><subject>palaeogeography</subject><subject>paleoclimatology</subject><subject>paleoecology</subject><subject>Pleistocene epoch</subject><subject>Pliocene epoch</subject><subject>rivers</subject><subject>tectonics</subject><subject>thermochronology</subject><subject>topography</subject><subject>Western Tibetan Plateau</subject><issn>0031-0182</issn><issn>1872-616X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctuGzEMRYUiBeqk_YMutMxmHD08D2cRIAiaB2I0XbRA0Y3ASBxbjkZ0JTlFvqc_2jHG664IgvdegjyMfZZiLoVsLrbzHQRAmiuhFnMplRL6HZvJrlVVI5ufJ2wmhJaVkJ36wE5z3gohVKPVjP1dQUH-FPyaLEbkhfi3gD6XY7vBNFBV0BaK3nJ8pbAvniKn_jDkj5DghRIM_Bb2ofBfFPGSf8U_3Mfs15uSeZ9o4M-QccBYOETHHZbkCwQOOyh-3N_7nA-hJYF9OS61m0SRAq3fPrL3PYSMn471jP24_fL95r5aPd093FyvKtBSlqp39lm1ALUQnV12rYZGS2U71y4RhKqha-pOa3TgFs4uZQuobOuEEsu-VqD1GTufcneJfu8xFzP4bDEEiEj7bLSsddst6qYdpYtJahPlnLA3u-QHSG9GCnNgYrZmYmIOTMzEZLRdTTYcz3j1mEy2HqNF59P4YuPI_z_gH0crmxM</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Su, Wenbo</creator><creator>Cai, Keda</creator><creator>He, Zhiyuan</creator><creator>Zhao, Xinwei</creator><creator>Zhong, Hua</creator><creator>Glorie, Stijn</creator><creator>De Grave, Johan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240701</creationdate><title>Late Oligocene to Pleistocene thermo-tectonic evolution of the Karakoram Fault Zone: New insights from basement and detrital apatite fission track thermochronology</title><author>Su, Wenbo ; Cai, Keda ; He, Zhiyuan ; Zhao, Xinwei ; Zhong, Hua ; Glorie, Stijn ; De Grave, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a311t-fdcb27aa5008c9873a6312c8d79ea025a865833edad4dc917ae2c7d0209f52a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>apatite</topic><topic>Apatite fission track thermochronology</topic><topic>China</topic><topic>data collection</topic><topic>drainage</topic><topic>evolution</topic><topic>Exhumation</topic><topic>Indus River</topic><topic>Karakoram Fault Zone</topic><topic>Late Cenozoic</topic><topic>Miocene epoch</topic><topic>mountains</topic><topic>Oligocene epoch</topic><topic>palaeogeography</topic><topic>paleoclimatology</topic><topic>paleoecology</topic><topic>Pleistocene epoch</topic><topic>Pliocene epoch</topic><topic>rivers</topic><topic>tectonics</topic><topic>thermochronology</topic><topic>topography</topic><topic>Western Tibetan Plateau</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Wenbo</creatorcontrib><creatorcontrib>Cai, Keda</creatorcontrib><creatorcontrib>He, Zhiyuan</creatorcontrib><creatorcontrib>Zhao, Xinwei</creatorcontrib><creatorcontrib>Zhong, Hua</creatorcontrib><creatorcontrib>Glorie, Stijn</creatorcontrib><creatorcontrib>De Grave, Johan</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Palaeogeography, palaeoclimatology, palaeoecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Wenbo</au><au>Cai, Keda</au><au>He, Zhiyuan</au><au>Zhao, Xinwei</au><au>Zhong, Hua</au><au>Glorie, Stijn</au><au>De Grave, Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Late Oligocene to Pleistocene thermo-tectonic evolution of the Karakoram Fault Zone: New insights from basement and detrital apatite fission track thermochronology</atitle><jtitle>Palaeogeography, palaeoclimatology, palaeoecology</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>645</volume><spage>112203</spage><pages>112203-</pages><artnum>112203</artnum><issn>0031-0182</issn><eissn>1872-616X</eissn><abstract>The Karakoram Fault Zone displays distinctive topographic and tectonic characteristics, with intricate river drainage systems. Although there are extensive thermochronological datasets for the western Tibetan Plateau, limited investigations have been carried out to uncover the low-temperature thermal history of the Karakoram Fault Zone, which connects the Lhasa terrane with the Pamir. In this contribution, apatite fission track (AFT) thermochronology was conducted on 13 basement and 4 conglomerate samples collected from the western Gangdese batholith and the Ayi Mountain Range, on either side of the Karakoram fault. Inverse thermal history modeling results reveal that the western Gangdese batholith experienced two stages of rapid basement cooling at 27–23 Ma (late Oligocene-early Miocene) and 16–4 Ma (middle Miocene-Pliocene). The adjacent Ayi Mountain Range experienced cooling in the late Miocene (∼8 Ma) and during the Pliocene to Pleistocene (4–1 Ma). We suggest that tectonic forces associated with rollback and lateral break-off of the Indian continental lithosphere, and the dextral strike-slip activity of the Karakoram fault were responsible for the first cooling phase. The second accelerated cooling phase was due to the deep fragmentation of the Indian slab, the activity of the Karakoram normal fault, and associated ∼E-W extension. Additionally, since the late Oligocene, the Indus River incision has likely also contributed to the exhumation of the western Tibetan Plateau. Subsequently, the western Gangdese batholith reached high elevations, resulting in the reversal of the Yarlung River. The dextral-normal motion of the Karakoram fault, which is still active today, was the main cause of the Pliocene to Pleistocene accelerated cooling detected in the Ayi Mountain Range. •Two stages of late Cenozoic rapid cooling occurred in the north of the Karakoram Fault.•The south side of the Karakoram fault experienced Pliocene-Pleistocene rapid cooling.•A topographic inversion occurred in the Karakoram Fault Zone since the early Miocene.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.palaeo.2024.112203</doi></addata></record>
fulltext fulltext
identifier ISSN: 0031-0182
ispartof Palaeogeography, palaeoclimatology, palaeoecology, 2024-07, Vol.645, p.112203, Article 112203
issn 0031-0182
1872-616X
language eng
recordid cdi_proquest_miscellaneous_3153784567
source Elsevier ScienceDirect Journals
subjects apatite
Apatite fission track thermochronology
China
data collection
drainage
evolution
Exhumation
Indus River
Karakoram Fault Zone
Late Cenozoic
Miocene epoch
mountains
Oligocene epoch
palaeogeography
paleoclimatology
paleoecology
Pleistocene epoch
Pliocene epoch
rivers
tectonics
thermochronology
topography
Western Tibetan Plateau
title Late Oligocene to Pleistocene thermo-tectonic evolution of the Karakoram Fault Zone: New insights from basement and detrital apatite fission track thermochronology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Late%20Oligocene%20to%20Pleistocene%20thermo-tectonic%20evolution%20of%20the%20Karakoram%20Fault%20Zone:%20New%20insights%20from%20basement%20and%20detrital%20apatite%20fission%20track%20thermochronology&rft.jtitle=Palaeogeography,%20palaeoclimatology,%20palaeoecology&rft.au=Su,%20Wenbo&rft.date=2024-07-01&rft.volume=645&rft.spage=112203&rft.pages=112203-&rft.artnum=112203&rft.issn=0031-0182&rft.eissn=1872-616X&rft_id=info:doi/10.1016/j.palaeo.2024.112203&rft_dat=%3Cproquest_cross%3E3153784567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153784567&rft_id=info:pmid/&rft_els_id=S0031018224001925&rfr_iscdi=true