Solution-Processed Polymer Memcapacitors with Stimulus-Controlled and Evolvable Synaptic Functionalities: From Short-Term Plasticity to Long-Term Plasticity to Metaplasticity
In the vanguard of neuromorphic engineering, we develop a paradigm of biocompatible polymer memcapacitors using a seamless solution process, unleashing comprehensive synaptic capabilities depending on both the stimulation form and history. Like the human brain to learn and adapt, the memcapacitors e...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-09, Vol.16 (36), p.47996-48004 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48004 |
---|---|
container_issue | 36 |
container_start_page | 47996 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Cai, Jia-Wei Ye, Jing-Ting Zhong, Ya-Nan Zhang, Zhong-Da Zong, Hao Li, Li-Xing Han, Xue-Er Xu, Jian-Long Gao, Xu Lee, Shuit-Tong Wang, Sui-Dong |
description | In the vanguard of neuromorphic engineering, we develop a paradigm of biocompatible polymer memcapacitors using a seamless solution process, unleashing comprehensive synaptic capabilities depending on both the stimulation form and history. Like the human brain to learn and adapt, the memcapacitors exhibit analogue-type and evolvable capacitance shifts that mirror the complex flexibility of synaptic strengthening and weakening. With increasing frequency and intensity of the stimulation, the memcapacitors demonstrate an evolution from short-term plasticity (STP) to long-term plasticity (LTP), and even to metaplasticity (MP) at a higher level. A physical picture, featuring the stimulus-controlled spatiotemporal ion redistribution in the polymer, elaborates the origin of the memcapacitive prowess and resultant versatile synaptic plasticity. The distinctive MP behavior endows the memcapacitors with a dynamic learning rate (LR), which is utilized in an artificial neural network. The superiority of implementing a dynamic LR compared with conventional practices of using constant LR shines light on the potential of the memcapacitors to exploit organic neuromorphic computing hardware. |
doi_str_mv | 10.1021/acsami.4c09593 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153781101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099858500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-3246e104283bcc1c53d31c390094f6e6769d9d275d739b5ef0c14b5046d676293</originalsourceid><addsrcrecordid>eNqFkT1v2zAQhomiQfPVtWPAsYscfkpitsCI2wAOYsDJLFDUuWFBigpJJfCf6m-MAjueCmS6w3vPvcuD0A9KZpQweqlN0t7OhCFKKv4FnVAlRFEzyb4ediGO0WlKfwkpOSPyGzrmijEqK3WC_q2DG7MNfbGKwUBK0OFVcFsPEd-BN3rQxuYQE361-Qmvs_WjG1MxD32OwbkJ132Hb16Ce9GtA7ze9nrI1uDF2Jv3Yu1stpCu8CIGj9dPIebiAaLHK6fTBNq8xTngZej__C-_g6yHQ3KOjjbaJfi-n2focXHzMP9dLO9_3c6vl4VhlOeCM1ECJYLVvDWGGsk7Tg1XhCixKaGsStWpjlWyq7hqJWyIoaKVRJTddGOKn6Gfu94hhucRUm68TQac0z2EMTWcSl7VlBL6OUqUqmUtCZnQ2Q41MaQUYdMM0Xodtw0lzbvOZqez2eucHi723WProTvgH_74Gx5ZoAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099858500</pqid></control><display><type>article</type><title>Solution-Processed Polymer Memcapacitors with Stimulus-Controlled and Evolvable Synaptic Functionalities: From Short-Term Plasticity to Long-Term Plasticity to Metaplasticity</title><source>American Chemical Society Journals</source><creator>Cai, Jia-Wei ; Ye, Jing-Ting ; Zhong, Ya-Nan ; Zhang, Zhong-Da ; Zong, Hao ; Li, Li-Xing ; Han, Xue-Er ; Xu, Jian-Long ; Gao, Xu ; Lee, Shuit-Tong ; Wang, Sui-Dong</creator><creatorcontrib>Cai, Jia-Wei ; Ye, Jing-Ting ; Zhong, Ya-Nan ; Zhang, Zhong-Da ; Zong, Hao ; Li, Li-Xing ; Han, Xue-Er ; Xu, Jian-Long ; Gao, Xu ; Lee, Shuit-Tong ; Wang, Sui-Dong</creatorcontrib><description>In the vanguard of neuromorphic engineering, we develop a paradigm of biocompatible polymer memcapacitors using a seamless solution process, unleashing comprehensive synaptic capabilities depending on both the stimulation form and history. Like the human brain to learn and adapt, the memcapacitors exhibit analogue-type and evolvable capacitance shifts that mirror the complex flexibility of synaptic strengthening and weakening. With increasing frequency and intensity of the stimulation, the memcapacitors demonstrate an evolution from short-term plasticity (STP) to long-term plasticity (LTP), and even to metaplasticity (MP) at a higher level. A physical picture, featuring the stimulus-controlled spatiotemporal ion redistribution in the polymer, elaborates the origin of the memcapacitive prowess and resultant versatile synaptic plasticity. The distinctive MP behavior endows the memcapacitors with a dynamic learning rate (LR), which is utilized in an artificial neural network. The superiority of implementing a dynamic LR compared with conventional practices of using constant LR shines light on the potential of the memcapacitors to exploit organic neuromorphic computing hardware.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c09593</identifier><identifier>PMID: 39221579</identifier><language>eng</language><publisher>United States</publisher><subject>brain ; capacitance ; evolution ; humans ; neural networks ; neuroplasticity ; plasticity ; polymers</subject><ispartof>ACS applied materials & interfaces, 2024-09, Vol.16 (36), p.47996-48004</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c213t-3246e104283bcc1c53d31c390094f6e6769d9d275d739b5ef0c14b5046d676293</cites><orcidid>0000-0002-7491-0758 ; 0000-0002-0824-657X ; 0000-0003-1238-9802 ; 0000-0002-4761-4793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39221579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Jia-Wei</creatorcontrib><creatorcontrib>Ye, Jing-Ting</creatorcontrib><creatorcontrib>Zhong, Ya-Nan</creatorcontrib><creatorcontrib>Zhang, Zhong-Da</creatorcontrib><creatorcontrib>Zong, Hao</creatorcontrib><creatorcontrib>Li, Li-Xing</creatorcontrib><creatorcontrib>Han, Xue-Er</creatorcontrib><creatorcontrib>Xu, Jian-Long</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Lee, Shuit-Tong</creatorcontrib><creatorcontrib>Wang, Sui-Dong</creatorcontrib><title>Solution-Processed Polymer Memcapacitors with Stimulus-Controlled and Evolvable Synaptic Functionalities: From Short-Term Plasticity to Long-Term Plasticity to Metaplasticity</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>In the vanguard of neuromorphic engineering, we develop a paradigm of biocompatible polymer memcapacitors using a seamless solution process, unleashing comprehensive synaptic capabilities depending on both the stimulation form and history. Like the human brain to learn and adapt, the memcapacitors exhibit analogue-type and evolvable capacitance shifts that mirror the complex flexibility of synaptic strengthening and weakening. With increasing frequency and intensity of the stimulation, the memcapacitors demonstrate an evolution from short-term plasticity (STP) to long-term plasticity (LTP), and even to metaplasticity (MP) at a higher level. A physical picture, featuring the stimulus-controlled spatiotemporal ion redistribution in the polymer, elaborates the origin of the memcapacitive prowess and resultant versatile synaptic plasticity. The distinctive MP behavior endows the memcapacitors with a dynamic learning rate (LR), which is utilized in an artificial neural network. The superiority of implementing a dynamic LR compared with conventional practices of using constant LR shines light on the potential of the memcapacitors to exploit organic neuromorphic computing hardware.</description><subject>brain</subject><subject>capacitance</subject><subject>evolution</subject><subject>humans</subject><subject>neural networks</subject><subject>neuroplasticity</subject><subject>plasticity</subject><subject>polymers</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT1v2zAQhomiQfPVtWPAsYscfkpitsCI2wAOYsDJLFDUuWFBigpJJfCf6m-MAjueCmS6w3vPvcuD0A9KZpQweqlN0t7OhCFKKv4FnVAlRFEzyb4ediGO0WlKfwkpOSPyGzrmijEqK3WC_q2DG7MNfbGKwUBK0OFVcFsPEd-BN3rQxuYQE361-Qmvs_WjG1MxD32OwbkJ132Hb16Ce9GtA7ze9nrI1uDF2Jv3Yu1stpCu8CIGj9dPIebiAaLHK6fTBNq8xTngZej__C-_g6yHQ3KOjjbaJfi-n2focXHzMP9dLO9_3c6vl4VhlOeCM1ECJYLVvDWGGsk7Tg1XhCixKaGsStWpjlWyq7hqJWyIoaKVRJTddGOKn6Gfu94hhucRUm68TQac0z2EMTWcSl7VlBL6OUqUqmUtCZnQ2Q41MaQUYdMM0Xodtw0lzbvOZqez2eucHi723WProTvgH_74Gx5ZoAM</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Cai, Jia-Wei</creator><creator>Ye, Jing-Ting</creator><creator>Zhong, Ya-Nan</creator><creator>Zhang, Zhong-Da</creator><creator>Zong, Hao</creator><creator>Li, Li-Xing</creator><creator>Han, Xue-Er</creator><creator>Xu, Jian-Long</creator><creator>Gao, Xu</creator><creator>Lee, Shuit-Tong</creator><creator>Wang, Sui-Dong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7491-0758</orcidid><orcidid>https://orcid.org/0000-0002-0824-657X</orcidid><orcidid>https://orcid.org/0000-0003-1238-9802</orcidid><orcidid>https://orcid.org/0000-0002-4761-4793</orcidid></search><sort><creationdate>20240911</creationdate><title>Solution-Processed Polymer Memcapacitors with Stimulus-Controlled and Evolvable Synaptic Functionalities: From Short-Term Plasticity to Long-Term Plasticity to Metaplasticity</title><author>Cai, Jia-Wei ; Ye, Jing-Ting ; Zhong, Ya-Nan ; Zhang, Zhong-Da ; Zong, Hao ; Li, Li-Xing ; Han, Xue-Er ; Xu, Jian-Long ; Gao, Xu ; Lee, Shuit-Tong ; Wang, Sui-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-3246e104283bcc1c53d31c390094f6e6769d9d275d739b5ef0c14b5046d676293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>brain</topic><topic>capacitance</topic><topic>evolution</topic><topic>humans</topic><topic>neural networks</topic><topic>neuroplasticity</topic><topic>plasticity</topic><topic>polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Jia-Wei</creatorcontrib><creatorcontrib>Ye, Jing-Ting</creatorcontrib><creatorcontrib>Zhong, Ya-Nan</creatorcontrib><creatorcontrib>Zhang, Zhong-Da</creatorcontrib><creatorcontrib>Zong, Hao</creatorcontrib><creatorcontrib>Li, Li-Xing</creatorcontrib><creatorcontrib>Han, Xue-Er</creatorcontrib><creatorcontrib>Xu, Jian-Long</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Lee, Shuit-Tong</creatorcontrib><creatorcontrib>Wang, Sui-Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Jia-Wei</au><au>Ye, Jing-Ting</au><au>Zhong, Ya-Nan</au><au>Zhang, Zhong-Da</au><au>Zong, Hao</au><au>Li, Li-Xing</au><au>Han, Xue-Er</au><au>Xu, Jian-Long</au><au>Gao, Xu</au><au>Lee, Shuit-Tong</au><au>Wang, Sui-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution-Processed Polymer Memcapacitors with Stimulus-Controlled and Evolvable Synaptic Functionalities: From Short-Term Plasticity to Long-Term Plasticity to Metaplasticity</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2024-09-11</date><risdate>2024</risdate><volume>16</volume><issue>36</issue><spage>47996</spage><epage>48004</epage><pages>47996-48004</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>In the vanguard of neuromorphic engineering, we develop a paradigm of biocompatible polymer memcapacitors using a seamless solution process, unleashing comprehensive synaptic capabilities depending on both the stimulation form and history. Like the human brain to learn and adapt, the memcapacitors exhibit analogue-type and evolvable capacitance shifts that mirror the complex flexibility of synaptic strengthening and weakening. With increasing frequency and intensity of the stimulation, the memcapacitors demonstrate an evolution from short-term plasticity (STP) to long-term plasticity (LTP), and even to metaplasticity (MP) at a higher level. A physical picture, featuring the stimulus-controlled spatiotemporal ion redistribution in the polymer, elaborates the origin of the memcapacitive prowess and resultant versatile synaptic plasticity. The distinctive MP behavior endows the memcapacitors with a dynamic learning rate (LR), which is utilized in an artificial neural network. The superiority of implementing a dynamic LR compared with conventional practices of using constant LR shines light on the potential of the memcapacitors to exploit organic neuromorphic computing hardware.</abstract><cop>United States</cop><pmid>39221579</pmid><doi>10.1021/acsami.4c09593</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7491-0758</orcidid><orcidid>https://orcid.org/0000-0002-0824-657X</orcidid><orcidid>https://orcid.org/0000-0003-1238-9802</orcidid><orcidid>https://orcid.org/0000-0002-4761-4793</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-09, Vol.16 (36), p.47996-48004 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153781101 |
source | American Chemical Society Journals |
subjects | brain capacitance evolution humans neural networks neuroplasticity plasticity polymers |
title | Solution-Processed Polymer Memcapacitors with Stimulus-Controlled and Evolvable Synaptic Functionalities: From Short-Term Plasticity to Long-Term Plasticity to Metaplasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution-Processed%20Polymer%20Memcapacitors%20with%20Stimulus-Controlled%20and%20Evolvable%20Synaptic%20Functionalities:%20From%20Short-Term%20Plasticity%20to%20Long-Term%20Plasticity%20to%20Metaplasticity&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Cai,%20Jia-Wei&rft.date=2024-09-11&rft.volume=16&rft.issue=36&rft.spage=47996&rft.epage=48004&rft.pages=47996-48004&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c09593&rft_dat=%3Cproquest_cross%3E3099858500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099858500&rft_id=info:pmid/39221579&rfr_iscdi=true |