Influence of Anatomical Spatial Architecture of Pinus devoniana on Pressure Gradients Inferred from Coupling Three-Dimensional CT Imaging and Numerical Flow Simulations

Conifer forests in Michoacán are facing climate change. Pinus devoniana Lindley, with natural distribution in the state, has shown certain adaptability, and knowing the influence of anatomy in the flow system is essential to delimit how it contributes to safety margins and water efficiency. For this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2024-08, Vol.15 (8), p.1403
Hauptverfasser: Rivera-Ramos, Juan Gabriel, Cruz de León, José, Arteaga, Dante, Espinoza-Herrera, Raúl, Arreola García, Erica, Arroyo-Albiter, Manuel, Olmos, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1403
container_title Forests
container_volume 15
creator Rivera-Ramos, Juan Gabriel
Cruz de León, José
Arteaga, Dante
Espinoza-Herrera, Raúl
Arreola García, Erica
Arroyo-Albiter, Manuel
Olmos, Luis
description Conifer forests in Michoacán are facing climate change. Pinus devoniana Lindley, with natural distribution in the state, has shown certain adaptability, and knowing the influence of anatomy in the flow system is essential to delimit how it contributes to safety margins and water efficiency. For this, the pressure gradients in the cell lumens and their ramifications were analyzed by numerical simulations of flow throughout the real microstructure. Xylem were evaluated in radial, tangential and longitudinal directions. With the skeletonization of lumens and their constrictions, a branching system of interconnection between tracheids, ray cells, intercellular chambers, extensions, and blind pits were identified. In the simulation, the branched system bypasses the longitudinal fluid passage through the pores in membranes of pairs of pits to redirect it through the direct path branching, contributing to safety margins and water efficiency. Thus, resilience at low pressures because of the lower pressure drop in the extensions. The interface between the branching system and the cell lumens are sites of higher pressure gradient, more conducive to water-vapor formation or air leakage in the face of the lowest pressure system. The flow lines move along easy paths, regardless of the simulated flow direction. Deposits in the cell extensions were shown to be attached to the S3 layer of the cell wall, leaving the center of the duct free to flow. It is concluded that the spatial architecture of the xylem anatomy of Pinus dvoniana is a factor in the resilience at low pressures due to high water stress of the species.
doi_str_mv 10.3390/f15081403
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153780927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807419246</galeid><sourcerecordid>A807419246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-524396774d4858c5cb86c15377bbb56cd27ba58bd3e637d64b4910a332dd16d03</originalsourceid><addsrcrecordid>eNptks1u3CAQx60qlRqlOfQNkHpJD07AYAPH1TYfK0VtpGzPFobxhgjDBkyqvlEfszip2qQqc5jRzG_-gGaq6gPBp5RKfDaSFgvCMH1THRIpZc0k5gcv4nfVcUr3uJyWC9mww-rnxo8ug9eAwohWXs1hslo5dLtXsy1-FfWdnUHPOT4hN9bnhAw8Bm-VVyh4dBMhpaV8GZWx4OeEiirECAaNMUxoHfLeWb9D27sIUH-2E_hkgy_y6y3aTGq3FJU36EueID7df-HCd3Rrp-zKO4JP76u3o3IJjn_7o-rbxfl2fVVff73crFfXtW5EM9dtw6jsOGeGiVboVg-i06SlnA_D0HbaNHxQrRgMhY5y07GBSYIVpY0xpDOYHlUnz7r7GB4ypLmfbNLgnPIQcurpIiawbHhBP_6D3occy68KhSWXFONG_qV2ykFv_RjmqPQi2q8E5oyUOXSFOv0PVcxAmUfwMNqSf9Xw6blBx5BShLHfRzup-KMnuF-2of-zDfQX5U-mhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097930029</pqid></control><display><type>article</type><title>Influence of Anatomical Spatial Architecture of Pinus devoniana on Pressure Gradients Inferred from Coupling Three-Dimensional CT Imaging and Numerical Flow Simulations</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rivera-Ramos, Juan Gabriel ; Cruz de León, José ; Arteaga, Dante ; Espinoza-Herrera, Raúl ; Arreola García, Erica ; Arroyo-Albiter, Manuel ; Olmos, Luis</creator><creatorcontrib>Rivera-Ramos, Juan Gabriel ; Cruz de León, José ; Arteaga, Dante ; Espinoza-Herrera, Raúl ; Arreola García, Erica ; Arroyo-Albiter, Manuel ; Olmos, Luis</creatorcontrib><description>Conifer forests in Michoacán are facing climate change. Pinus devoniana Lindley, with natural distribution in the state, has shown certain adaptability, and knowing the influence of anatomy in the flow system is essential to delimit how it contributes to safety margins and water efficiency. For this, the pressure gradients in the cell lumens and their ramifications were analyzed by numerical simulations of flow throughout the real microstructure. Xylem were evaluated in radial, tangential and longitudinal directions. With the skeletonization of lumens and their constrictions, a branching system of interconnection between tracheids, ray cells, intercellular chambers, extensions, and blind pits were identified. In the simulation, the branched system bypasses the longitudinal fluid passage through the pores in membranes of pairs of pits to redirect it through the direct path branching, contributing to safety margins and water efficiency. Thus, resilience at low pressures because of the lower pressure drop in the extensions. The interface between the branching system and the cell lumens are sites of higher pressure gradient, more conducive to water-vapor formation or air leakage in the face of the lowest pressure system. The flow lines move along easy paths, regardless of the simulated flow direction. Deposits in the cell extensions were shown to be attached to the S3 layer of the cell wall, leaving the center of the duct free to flow. It is concluded that the spatial architecture of the xylem anatomy of Pinus dvoniana is a factor in the resilience at low pressures due to high water stress of the species.</description><identifier>ISSN: 1999-4907</identifier><identifier>EISSN: 1999-4907</identifier><identifier>DOI: 10.3390/f15081403</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptability ; air ; Air leakage ; Anatomy ; Cell walls ; Climate change ; Climatic changes ; Computed tomography ; Computer simulation ; Computer-generated environments ; Coniferous forests ; conifers ; CT imaging ; Drought ; Environmental aspects ; Flow simulation ; Flow system ; Fluid dynamics ; geographical distribution ; Hydraulics ; Hypotheses ; Lumens ; microstructure ; Partial differential equations ; Physiological aspects ; Pine ; Pine trees ; Pinus ; Pits ; Pressure ; Pressure drop ; Pressure gradients ; Resilience ; Safety margins ; Simulation ; Simulation methods ; species ; Structure ; Three dimensional flow ; Three dimensional imaging ; tracheids ; Water ; Water shortages ; Water stress ; Water vapor ; X-rays ; Xylem</subject><ispartof>Forests, 2024-08, Vol.15 (8), p.1403</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-524396774d4858c5cb86c15377bbb56cd27ba58bd3e637d64b4910a332dd16d03</cites><orcidid>0000-0001-9812-7760 ; 0000-0001-7399-2643 ; 0000-0001-9510-5101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rivera-Ramos, Juan Gabriel</creatorcontrib><creatorcontrib>Cruz de León, José</creatorcontrib><creatorcontrib>Arteaga, Dante</creatorcontrib><creatorcontrib>Espinoza-Herrera, Raúl</creatorcontrib><creatorcontrib>Arreola García, Erica</creatorcontrib><creatorcontrib>Arroyo-Albiter, Manuel</creatorcontrib><creatorcontrib>Olmos, Luis</creatorcontrib><title>Influence of Anatomical Spatial Architecture of Pinus devoniana on Pressure Gradients Inferred from Coupling Three-Dimensional CT Imaging and Numerical Flow Simulations</title><title>Forests</title><description>Conifer forests in Michoacán are facing climate change. Pinus devoniana Lindley, with natural distribution in the state, has shown certain adaptability, and knowing the influence of anatomy in the flow system is essential to delimit how it contributes to safety margins and water efficiency. For this, the pressure gradients in the cell lumens and their ramifications were analyzed by numerical simulations of flow throughout the real microstructure. Xylem were evaluated in radial, tangential and longitudinal directions. With the skeletonization of lumens and their constrictions, a branching system of interconnection between tracheids, ray cells, intercellular chambers, extensions, and blind pits were identified. In the simulation, the branched system bypasses the longitudinal fluid passage through the pores in membranes of pairs of pits to redirect it through the direct path branching, contributing to safety margins and water efficiency. Thus, resilience at low pressures because of the lower pressure drop in the extensions. The interface between the branching system and the cell lumens are sites of higher pressure gradient, more conducive to water-vapor formation or air leakage in the face of the lowest pressure system. The flow lines move along easy paths, regardless of the simulated flow direction. Deposits in the cell extensions were shown to be attached to the S3 layer of the cell wall, leaving the center of the duct free to flow. It is concluded that the spatial architecture of the xylem anatomy of Pinus dvoniana is a factor in the resilience at low pressures due to high water stress of the species.</description><subject>Adaptability</subject><subject>air</subject><subject>Air leakage</subject><subject>Anatomy</subject><subject>Cell walls</subject><subject>Climate change</subject><subject>Climatic changes</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Coniferous forests</subject><subject>conifers</subject><subject>CT imaging</subject><subject>Drought</subject><subject>Environmental aspects</subject><subject>Flow simulation</subject><subject>Flow system</subject><subject>Fluid dynamics</subject><subject>geographical distribution</subject><subject>Hydraulics</subject><subject>Hypotheses</subject><subject>Lumens</subject><subject>microstructure</subject><subject>Partial differential equations</subject><subject>Physiological aspects</subject><subject>Pine</subject><subject>Pine trees</subject><subject>Pinus</subject><subject>Pits</subject><subject>Pressure</subject><subject>Pressure drop</subject><subject>Pressure gradients</subject><subject>Resilience</subject><subject>Safety margins</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>species</subject><subject>Structure</subject><subject>Three dimensional flow</subject><subject>Three dimensional imaging</subject><subject>tracheids</subject><subject>Water</subject><subject>Water shortages</subject><subject>Water stress</subject><subject>Water vapor</subject><subject>X-rays</subject><subject>Xylem</subject><issn>1999-4907</issn><issn>1999-4907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptks1u3CAQx60qlRqlOfQNkHpJD07AYAPH1TYfK0VtpGzPFobxhgjDBkyqvlEfszip2qQqc5jRzG_-gGaq6gPBp5RKfDaSFgvCMH1THRIpZc0k5gcv4nfVcUr3uJyWC9mww-rnxo8ug9eAwohWXs1hslo5dLtXsy1-FfWdnUHPOT4hN9bnhAw8Bm-VVyh4dBMhpaV8GZWx4OeEiirECAaNMUxoHfLeWb9D27sIUH-2E_hkgy_y6y3aTGq3FJU36EueID7df-HCd3Rrp-zKO4JP76u3o3IJjn_7o-rbxfl2fVVff73crFfXtW5EM9dtw6jsOGeGiVboVg-i06SlnA_D0HbaNHxQrRgMhY5y07GBSYIVpY0xpDOYHlUnz7r7GB4ypLmfbNLgnPIQcurpIiawbHhBP_6D3occy68KhSWXFONG_qV2ykFv_RjmqPQi2q8E5oyUOXSFOv0PVcxAmUfwMNqSf9Xw6blBx5BShLHfRzup-KMnuF-2of-zDfQX5U-mhA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Rivera-Ramos, Juan Gabriel</creator><creator>Cruz de León, José</creator><creator>Arteaga, Dante</creator><creator>Espinoza-Herrera, Raúl</creator><creator>Arreola García, Erica</creator><creator>Arroyo-Albiter, Manuel</creator><creator>Olmos, Luis</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9812-7760</orcidid><orcidid>https://orcid.org/0000-0001-7399-2643</orcidid><orcidid>https://orcid.org/0000-0001-9510-5101</orcidid></search><sort><creationdate>20240801</creationdate><title>Influence of Anatomical Spatial Architecture of Pinus devoniana on Pressure Gradients Inferred from Coupling Three-Dimensional CT Imaging and Numerical Flow Simulations</title><author>Rivera-Ramos, Juan Gabriel ; Cruz de León, José ; Arteaga, Dante ; Espinoza-Herrera, Raúl ; Arreola García, Erica ; Arroyo-Albiter, Manuel ; Olmos, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-524396774d4858c5cb86c15377bbb56cd27ba58bd3e637d64b4910a332dd16d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptability</topic><topic>air</topic><topic>Air leakage</topic><topic>Anatomy</topic><topic>Cell walls</topic><topic>Climate change</topic><topic>Climatic changes</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Coniferous forests</topic><topic>conifers</topic><topic>CT imaging</topic><topic>Drought</topic><topic>Environmental aspects</topic><topic>Flow simulation</topic><topic>Flow system</topic><topic>Fluid dynamics</topic><topic>geographical distribution</topic><topic>Hydraulics</topic><topic>Hypotheses</topic><topic>Lumens</topic><topic>microstructure</topic><topic>Partial differential equations</topic><topic>Physiological aspects</topic><topic>Pine</topic><topic>Pine trees</topic><topic>Pinus</topic><topic>Pits</topic><topic>Pressure</topic><topic>Pressure drop</topic><topic>Pressure gradients</topic><topic>Resilience</topic><topic>Safety margins</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>species</topic><topic>Structure</topic><topic>Three dimensional flow</topic><topic>Three dimensional imaging</topic><topic>tracheids</topic><topic>Water</topic><topic>Water shortages</topic><topic>Water stress</topic><topic>Water vapor</topic><topic>X-rays</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera-Ramos, Juan Gabriel</creatorcontrib><creatorcontrib>Cruz de León, José</creatorcontrib><creatorcontrib>Arteaga, Dante</creatorcontrib><creatorcontrib>Espinoza-Herrera, Raúl</creatorcontrib><creatorcontrib>Arreola García, Erica</creatorcontrib><creatorcontrib>Arroyo-Albiter, Manuel</creatorcontrib><creatorcontrib>Olmos, Luis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Forests</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera-Ramos, Juan Gabriel</au><au>Cruz de León, José</au><au>Arteaga, Dante</au><au>Espinoza-Herrera, Raúl</au><au>Arreola García, Erica</au><au>Arroyo-Albiter, Manuel</au><au>Olmos, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Anatomical Spatial Architecture of Pinus devoniana on Pressure Gradients Inferred from Coupling Three-Dimensional CT Imaging and Numerical Flow Simulations</atitle><jtitle>Forests</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>15</volume><issue>8</issue><spage>1403</spage><pages>1403-</pages><issn>1999-4907</issn><eissn>1999-4907</eissn><abstract>Conifer forests in Michoacán are facing climate change. Pinus devoniana Lindley, with natural distribution in the state, has shown certain adaptability, and knowing the influence of anatomy in the flow system is essential to delimit how it contributes to safety margins and water efficiency. For this, the pressure gradients in the cell lumens and their ramifications were analyzed by numerical simulations of flow throughout the real microstructure. Xylem were evaluated in radial, tangential and longitudinal directions. With the skeletonization of lumens and their constrictions, a branching system of interconnection between tracheids, ray cells, intercellular chambers, extensions, and blind pits were identified. In the simulation, the branched system bypasses the longitudinal fluid passage through the pores in membranes of pairs of pits to redirect it through the direct path branching, contributing to safety margins and water efficiency. Thus, resilience at low pressures because of the lower pressure drop in the extensions. The interface between the branching system and the cell lumens are sites of higher pressure gradient, more conducive to water-vapor formation or air leakage in the face of the lowest pressure system. The flow lines move along easy paths, regardless of the simulated flow direction. Deposits in the cell extensions were shown to be attached to the S3 layer of the cell wall, leaving the center of the duct free to flow. It is concluded that the spatial architecture of the xylem anatomy of Pinus dvoniana is a factor in the resilience at low pressures due to high water stress of the species.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/f15081403</doi><orcidid>https://orcid.org/0000-0001-9812-7760</orcidid><orcidid>https://orcid.org/0000-0001-7399-2643</orcidid><orcidid>https://orcid.org/0000-0001-9510-5101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1999-4907
ispartof Forests, 2024-08, Vol.15 (8), p.1403
issn 1999-4907
1999-4907
language eng
recordid cdi_proquest_miscellaneous_3153780927
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Adaptability
air
Air leakage
Anatomy
Cell walls
Climate change
Climatic changes
Computed tomography
Computer simulation
Computer-generated environments
Coniferous forests
conifers
CT imaging
Drought
Environmental aspects
Flow simulation
Flow system
Fluid dynamics
geographical distribution
Hydraulics
Hypotheses
Lumens
microstructure
Partial differential equations
Physiological aspects
Pine
Pine trees
Pinus
Pits
Pressure
Pressure drop
Pressure gradients
Resilience
Safety margins
Simulation
Simulation methods
species
Structure
Three dimensional flow
Three dimensional imaging
tracheids
Water
Water shortages
Water stress
Water vapor
X-rays
Xylem
title Influence of Anatomical Spatial Architecture of Pinus devoniana on Pressure Gradients Inferred from Coupling Three-Dimensional CT Imaging and Numerical Flow Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Anatomical%20Spatial%20Architecture%20of%20Pinus%20devoniana%20on%20Pressure%20Gradients%20Inferred%20from%20Coupling%20Three-Dimensional%20CT%20Imaging%20and%20Numerical%20Flow%20Simulations&rft.jtitle=Forests&rft.au=Rivera-Ramos,%20Juan%20Gabriel&rft.date=2024-08-01&rft.volume=15&rft.issue=8&rft.spage=1403&rft.pages=1403-&rft.issn=1999-4907&rft.eissn=1999-4907&rft_id=info:doi/10.3390/f15081403&rft_dat=%3Cgale_proqu%3EA807419246%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097930029&rft_id=info:pmid/&rft_galeid=A807419246&rfr_iscdi=true