Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles

A two-stage chemical looping approach is demonstrated for sustainable hydrogen production through methane decomposition (CH4 → C + 2H2) combined with cyclic catalyst regeneration via the reverse Boudouard reaction (C + CO2 → 2CO). A Ni-based spherical nanoparticle cluster, fabricated using a continu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2024-07, Vol.12 (32), p.12200-12215
Hauptverfasser: Zeng, Yu-Chun, Law, Zhi Xuan, Tsai, De-Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12215
container_issue 32
container_start_page 12200
container_title ACS sustainable chemistry & engineering
container_volume 12
creator Zeng, Yu-Chun
Law, Zhi Xuan
Tsai, De-Hao
description A two-stage chemical looping approach is demonstrated for sustainable hydrogen production through methane decomposition (CH4 → C + 2H2) combined with cyclic catalyst regeneration via the reverse Boudouard reaction (C + CO2 → 2CO). A Ni-based spherical nanoparticle cluster, fabricated using a continuous aerosol-based synthetic approach, is developed for effective cyclic catalysis of the above two chemical reactions. A sufficiently high CO2 conversion rate for catalyst regeneration (in terms of TOF CO 2 , 36.09 h–1) and a stably high yield of hydrogen (in terms of STY H 2 , 5.19 mmol gcat –1 min–1) are achievable using the 10Ni–1Ce/5Al sample. The outstanding performance of 10Ni–1Ce/5Al is attributed to the incorporation of CeO2 as a promoter, which possesses a high redox ability that enhances catalytic activity. Additionally, the synergistic effect between nickel and ceria on the two-stage chemical looping is of crucial importance, where CeO2 promotes CO2 capture and Ni catalyzes CO2 dissociation at the Ni–CeO2 interface. CeO2-incorporated samples generating whisker carbon after methane pyrolysis demonstrate better activity for cyclic catalyst regeneration. The novelty of the work stands on developing a high-performance dual functional nanostructured catalyst using an aerosol-based synthetic route. This approach creates a massive amount of active interface, by which the two-stage reactions can be promoted under a remarkably low temperature (e.g., 600 °C). The proposed dual functional catalyst material and catalytic pathway demonstrate significant advances for effective hydrogen production combined with cyclic catalyst regeneration via CO2 utilization, offering an eco-friendly pathway for industrial applications.
doi_str_mv 10.1021/acssuschemeng.4c04266
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153780172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153780172</sourcerecordid><originalsourceid>FETCH-LOGICAL-a160t-85a54de87dc9f8df77a562aac3356ecc8fde260acf48b8515c132d3afab3cad63</originalsourceid><addsrcrecordid>eNpVkE1PAjEQhjdGEwnyE0x69AL2Y9stR7OKmKAQI-fN0HahuOxqP2L0H_ivLeBB5zKTmTfPzLxZdknwiGBKrkF5H73amJ1p16Nc4ZwKcZL1KBFyiHPJT__U59nA-y1OMR4zKkkv-y673cq2RqNHEzbQGlQ6UK-2XaO6c2hK0cJ1OqpguxZ92LBB5ZyiZbCN_YJDcy8rIUDz6QN6NmvTGnecLP0ecxuhQZPYHhCpfIK288ElZHRp7QJcsKox_iI7q6HxZvCb-9lycvdSToez-f1DeTMbAhE4DCUHnmsjC63GtdR1UQAXFEAxxoVRStbaUIFB1blcSU64IoxqBjWsmAItWD-7OnLfXPcejQ_VznplmiY930VfMcJZITEpaJKSozSZXG276NL9viK42jtf_XO--nWe_QAcIX59</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153780172</pqid></control><display><type>article</type><title>Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles</title><source>ACS Publications</source><creator>Zeng, Yu-Chun ; Law, Zhi Xuan ; Tsai, De-Hao</creator><creatorcontrib>Zeng, Yu-Chun ; Law, Zhi Xuan ; Tsai, De-Hao</creatorcontrib><description>A two-stage chemical looping approach is demonstrated for sustainable hydrogen production through methane decomposition (CH4 → C + 2H2) combined with cyclic catalyst regeneration via the reverse Boudouard reaction (C + CO2 → 2CO). A Ni-based spherical nanoparticle cluster, fabricated using a continuous aerosol-based synthetic approach, is developed for effective cyclic catalysis of the above two chemical reactions. A sufficiently high CO2 conversion rate for catalyst regeneration (in terms of TOF CO 2 , 36.09 h–1) and a stably high yield of hydrogen (in terms of STY H 2 , 5.19 mmol gcat –1 min–1) are achievable using the 10Ni–1Ce/5Al sample. The outstanding performance of 10Ni–1Ce/5Al is attributed to the incorporation of CeO2 as a promoter, which possesses a high redox ability that enhances catalytic activity. Additionally, the synergistic effect between nickel and ceria on the two-stage chemical looping is of crucial importance, where CeO2 promotes CO2 capture and Ni catalyzes CO2 dissociation at the Ni–CeO2 interface. CeO2-incorporated samples generating whisker carbon after methane pyrolysis demonstrate better activity for cyclic catalyst regeneration. The novelty of the work stands on developing a high-performance dual functional nanostructured catalyst using an aerosol-based synthetic route. This approach creates a massive amount of active interface, by which the two-stage reactions can be promoted under a remarkably low temperature (e.g., 600 °C). The proposed dual functional catalyst material and catalytic pathway demonstrate significant advances for effective hydrogen production combined with cyclic catalyst regeneration via CO2 utilization, offering an eco-friendly pathway for industrial applications.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.4c04266</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>carbon ; carbon dioxide ; catalysts ; catalytic activity ; dissociation ; green chemistry ; hydrogen ; hydrogen production ; methane ; nanoparticles ; nickel ; pyrolysis ; synergism ; temperature</subject><ispartof>ACS sustainable chemistry &amp; engineering, 2024-07, Vol.12 (32), p.12200-12215</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0002-2978-7962 ; 0000-0003-3151-1076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.4c04266$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.4c04266$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zeng, Yu-Chun</creatorcontrib><creatorcontrib>Law, Zhi Xuan</creatorcontrib><creatorcontrib>Tsai, De-Hao</creatorcontrib><title>Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>A two-stage chemical looping approach is demonstrated for sustainable hydrogen production through methane decomposition (CH4 → C + 2H2) combined with cyclic catalyst regeneration via the reverse Boudouard reaction (C + CO2 → 2CO). A Ni-based spherical nanoparticle cluster, fabricated using a continuous aerosol-based synthetic approach, is developed for effective cyclic catalysis of the above two chemical reactions. A sufficiently high CO2 conversion rate for catalyst regeneration (in terms of TOF CO 2 , 36.09 h–1) and a stably high yield of hydrogen (in terms of STY H 2 , 5.19 mmol gcat –1 min–1) are achievable using the 10Ni–1Ce/5Al sample. The outstanding performance of 10Ni–1Ce/5Al is attributed to the incorporation of CeO2 as a promoter, which possesses a high redox ability that enhances catalytic activity. Additionally, the synergistic effect between nickel and ceria on the two-stage chemical looping is of crucial importance, where CeO2 promotes CO2 capture and Ni catalyzes CO2 dissociation at the Ni–CeO2 interface. CeO2-incorporated samples generating whisker carbon after methane pyrolysis demonstrate better activity for cyclic catalyst regeneration. The novelty of the work stands on developing a high-performance dual functional nanostructured catalyst using an aerosol-based synthetic route. This approach creates a massive amount of active interface, by which the two-stage reactions can be promoted under a remarkably low temperature (e.g., 600 °C). The proposed dual functional catalyst material and catalytic pathway demonstrate significant advances for effective hydrogen production combined with cyclic catalyst regeneration via CO2 utilization, offering an eco-friendly pathway for industrial applications.</description><subject>carbon</subject><subject>carbon dioxide</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>dissociation</subject><subject>green chemistry</subject><subject>hydrogen</subject><subject>hydrogen production</subject><subject>methane</subject><subject>nanoparticles</subject><subject>nickel</subject><subject>pyrolysis</subject><subject>synergism</subject><subject>temperature</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkE1PAjEQhjdGEwnyE0x69AL2Y9stR7OKmKAQI-fN0HahuOxqP2L0H_ivLeBB5zKTmTfPzLxZdknwiGBKrkF5H73amJ1p16Nc4ZwKcZL1KBFyiHPJT__U59nA-y1OMR4zKkkv-y673cq2RqNHEzbQGlQ6UK-2XaO6c2hK0cJ1OqpguxZ92LBB5ZyiZbCN_YJDcy8rIUDz6QN6NmvTGnecLP0ecxuhQZPYHhCpfIK288ElZHRp7QJcsKox_iI7q6HxZvCb-9lycvdSToez-f1DeTMbAhE4DCUHnmsjC63GtdR1UQAXFEAxxoVRStbaUIFB1blcSU64IoxqBjWsmAItWD-7OnLfXPcejQ_VznplmiY930VfMcJZITEpaJKSozSZXG276NL9viK42jtf_XO--nWe_QAcIX59</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Zeng, Yu-Chun</creator><creator>Law, Zhi Xuan</creator><creator>Tsai, De-Hao</creator><general>American Chemical Society</general><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0002-2978-7962</orcidid><orcidid>https://orcid.org/0000-0003-3151-1076</orcidid></search><sort><creationdate>20240729</creationdate><title>Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles</title><author>Zeng, Yu-Chun ; Law, Zhi Xuan ; Tsai, De-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a160t-85a54de87dc9f8df77a562aac3356ecc8fde260acf48b8515c132d3afab3cad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>carbon</topic><topic>carbon dioxide</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>dissociation</topic><topic>green chemistry</topic><topic>hydrogen</topic><topic>hydrogen production</topic><topic>methane</topic><topic>nanoparticles</topic><topic>nickel</topic><topic>pyrolysis</topic><topic>synergism</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Yu-Chun</creatorcontrib><creatorcontrib>Law, Zhi Xuan</creatorcontrib><creatorcontrib>Tsai, De-Hao</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Yu-Chun</au><au>Law, Zhi Xuan</au><au>Tsai, De-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2024-07-29</date><risdate>2024</risdate><volume>12</volume><issue>32</issue><spage>12200</spage><epage>12215</epage><pages>12200-12215</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>A two-stage chemical looping approach is demonstrated for sustainable hydrogen production through methane decomposition (CH4 → C + 2H2) combined with cyclic catalyst regeneration via the reverse Boudouard reaction (C + CO2 → 2CO). A Ni-based spherical nanoparticle cluster, fabricated using a continuous aerosol-based synthetic approach, is developed for effective cyclic catalysis of the above two chemical reactions. A sufficiently high CO2 conversion rate for catalyst regeneration (in terms of TOF CO 2 , 36.09 h–1) and a stably high yield of hydrogen (in terms of STY H 2 , 5.19 mmol gcat –1 min–1) are achievable using the 10Ni–1Ce/5Al sample. The outstanding performance of 10Ni–1Ce/5Al is attributed to the incorporation of CeO2 as a promoter, which possesses a high redox ability that enhances catalytic activity. Additionally, the synergistic effect between nickel and ceria on the two-stage chemical looping is of crucial importance, where CeO2 promotes CO2 capture and Ni catalyzes CO2 dissociation at the Ni–CeO2 interface. CeO2-incorporated samples generating whisker carbon after methane pyrolysis demonstrate better activity for cyclic catalyst regeneration. The novelty of the work stands on developing a high-performance dual functional nanostructured catalyst using an aerosol-based synthetic route. This approach creates a massive amount of active interface, by which the two-stage reactions can be promoted under a remarkably low temperature (e.g., 600 °C). The proposed dual functional catalyst material and catalytic pathway demonstrate significant advances for effective hydrogen production combined with cyclic catalyst regeneration via CO2 utilization, offering an eco-friendly pathway for industrial applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.4c04266</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0002-2978-7962</orcidid><orcidid>https://orcid.org/0000-0003-3151-1076</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2024-07, Vol.12 (32), p.12200-12215
issn 2168-0485
2168-0485
language eng
recordid cdi_proquest_miscellaneous_3153780172
source ACS Publications
subjects carbon
carbon dioxide
catalysts
catalytic activity
dissociation
green chemistry
hydrogen
hydrogen production
methane
nanoparticles
nickel
pyrolysis
synergism
temperature
title Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Methane%20Cracking%20for%20H2%20Production%20with%20CO2%20Utilization%20for%20Catalyst%20Regeneration%20Using%20Dual%20Functional%20Nanostructured%20Particles&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Zeng,%20Yu-Chun&rft.date=2024-07-29&rft.volume=12&rft.issue=32&rft.spage=12200&rft.epage=12215&rft.pages=12200-12215&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.4c04266&rft_dat=%3Cproquest_acs_j%3E3153780172%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153780172&rft_id=info:pmid/&rfr_iscdi=true