Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles
A two-stage chemical looping approach is demonstrated for sustainable hydrogen production through methane decomposition (CH4 → C + 2H2) combined with cyclic catalyst regeneration via the reverse Boudouard reaction (C + CO2 → 2CO). A Ni-based spherical nanoparticle cluster, fabricated using a continu...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2024-07, Vol.12 (32), p.12200-12215 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12215 |
---|---|
container_issue | 32 |
container_start_page | 12200 |
container_title | ACS sustainable chemistry & engineering |
container_volume | 12 |
creator | Zeng, Yu-Chun Law, Zhi Xuan Tsai, De-Hao |
description | A two-stage chemical looping approach is demonstrated for sustainable hydrogen production through methane decomposition (CH4 → C + 2H2) combined with cyclic catalyst regeneration via the reverse Boudouard reaction (C + CO2 → 2CO). A Ni-based spherical nanoparticle cluster, fabricated using a continuous aerosol-based synthetic approach, is developed for effective cyclic catalysis of the above two chemical reactions. A sufficiently high CO2 conversion rate for catalyst regeneration (in terms of TOF CO 2 , 36.09 h–1) and a stably high yield of hydrogen (in terms of STY H 2 , 5.19 mmol gcat –1 min–1) are achievable using the 10Ni–1Ce/5Al sample. The outstanding performance of 10Ni–1Ce/5Al is attributed to the incorporation of CeO2 as a promoter, which possesses a high redox ability that enhances catalytic activity. Additionally, the synergistic effect between nickel and ceria on the two-stage chemical looping is of crucial importance, where CeO2 promotes CO2 capture and Ni catalyzes CO2 dissociation at the Ni–CeO2 interface. CeO2-incorporated samples generating whisker carbon after methane pyrolysis demonstrate better activity for cyclic catalyst regeneration. The novelty of the work stands on developing a high-performance dual functional nanostructured catalyst using an aerosol-based synthetic route. This approach creates a massive amount of active interface, by which the two-stage reactions can be promoted under a remarkably low temperature (e.g., 600 °C). The proposed dual functional catalyst material and catalytic pathway demonstrate significant advances for effective hydrogen production combined with cyclic catalyst regeneration via CO2 utilization, offering an eco-friendly pathway for industrial applications. |
doi_str_mv | 10.1021/acssuschemeng.4c04266 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153780172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153780172</sourcerecordid><originalsourceid>FETCH-LOGICAL-a160t-85a54de87dc9f8df77a562aac3356ecc8fde260acf48b8515c132d3afab3cad63</originalsourceid><addsrcrecordid>eNpVkE1PAjEQhjdGEwnyE0x69AL2Y9stR7OKmKAQI-fN0HahuOxqP2L0H_ivLeBB5zKTmTfPzLxZdknwiGBKrkF5H73amJ1p16Nc4ZwKcZL1KBFyiHPJT__U59nA-y1OMR4zKkkv-y673cq2RqNHEzbQGlQ6UK-2XaO6c2hK0cJ1OqpguxZ92LBB5ZyiZbCN_YJDcy8rIUDz6QN6NmvTGnecLP0ecxuhQZPYHhCpfIK288ElZHRp7QJcsKox_iI7q6HxZvCb-9lycvdSToez-f1DeTMbAhE4DCUHnmsjC63GtdR1UQAXFEAxxoVRStbaUIFB1blcSU64IoxqBjWsmAItWD-7OnLfXPcejQ_VznplmiY930VfMcJZITEpaJKSozSZXG276NL9viK42jtf_XO--nWe_QAcIX59</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153780172</pqid></control><display><type>article</type><title>Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles</title><source>ACS Publications</source><creator>Zeng, Yu-Chun ; Law, Zhi Xuan ; Tsai, De-Hao</creator><creatorcontrib>Zeng, Yu-Chun ; Law, Zhi Xuan ; Tsai, De-Hao</creatorcontrib><description>A two-stage chemical looping approach is demonstrated for sustainable hydrogen production through methane decomposition (CH4 → C + 2H2) combined with cyclic catalyst regeneration via the reverse Boudouard reaction (C + CO2 → 2CO). A Ni-based spherical nanoparticle cluster, fabricated using a continuous aerosol-based synthetic approach, is developed for effective cyclic catalysis of the above two chemical reactions. A sufficiently high CO2 conversion rate for catalyst regeneration (in terms of TOF CO 2 , 36.09 h–1) and a stably high yield of hydrogen (in terms of STY H 2 , 5.19 mmol gcat –1 min–1) are achievable using the 10Ni–1Ce/5Al sample. The outstanding performance of 10Ni–1Ce/5Al is attributed to the incorporation of CeO2 as a promoter, which possesses a high redox ability that enhances catalytic activity. Additionally, the synergistic effect between nickel and ceria on the two-stage chemical looping is of crucial importance, where CeO2 promotes CO2 capture and Ni catalyzes CO2 dissociation at the Ni–CeO2 interface. CeO2-incorporated samples generating whisker carbon after methane pyrolysis demonstrate better activity for cyclic catalyst regeneration. The novelty of the work stands on developing a high-performance dual functional nanostructured catalyst using an aerosol-based synthetic route. This approach creates a massive amount of active interface, by which the two-stage reactions can be promoted under a remarkably low temperature (e.g., 600 °C). The proposed dual functional catalyst material and catalytic pathway demonstrate significant advances for effective hydrogen production combined with cyclic catalyst regeneration via CO2 utilization, offering an eco-friendly pathway for industrial applications.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.4c04266</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>carbon ; carbon dioxide ; catalysts ; catalytic activity ; dissociation ; green chemistry ; hydrogen ; hydrogen production ; methane ; nanoparticles ; nickel ; pyrolysis ; synergism ; temperature</subject><ispartof>ACS sustainable chemistry & engineering, 2024-07, Vol.12 (32), p.12200-12215</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0002-2978-7962 ; 0000-0003-3151-1076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.4c04266$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.4c04266$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zeng, Yu-Chun</creatorcontrib><creatorcontrib>Law, Zhi Xuan</creatorcontrib><creatorcontrib>Tsai, De-Hao</creatorcontrib><title>Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles</title><title>ACS sustainable chemistry & engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>A two-stage chemical looping approach is demonstrated for sustainable hydrogen production through methane decomposition (CH4 → C + 2H2) combined with cyclic catalyst regeneration via the reverse Boudouard reaction (C + CO2 → 2CO). A Ni-based spherical nanoparticle cluster, fabricated using a continuous aerosol-based synthetic approach, is developed for effective cyclic catalysis of the above two chemical reactions. A sufficiently high CO2 conversion rate for catalyst regeneration (in terms of TOF CO 2 , 36.09 h–1) and a stably high yield of hydrogen (in terms of STY H 2 , 5.19 mmol gcat –1 min–1) are achievable using the 10Ni–1Ce/5Al sample. The outstanding performance of 10Ni–1Ce/5Al is attributed to the incorporation of CeO2 as a promoter, which possesses a high redox ability that enhances catalytic activity. Additionally, the synergistic effect between nickel and ceria on the two-stage chemical looping is of crucial importance, where CeO2 promotes CO2 capture and Ni catalyzes CO2 dissociation at the Ni–CeO2 interface. CeO2-incorporated samples generating whisker carbon after methane pyrolysis demonstrate better activity for cyclic catalyst regeneration. The novelty of the work stands on developing a high-performance dual functional nanostructured catalyst using an aerosol-based synthetic route. This approach creates a massive amount of active interface, by which the two-stage reactions can be promoted under a remarkably low temperature (e.g., 600 °C). The proposed dual functional catalyst material and catalytic pathway demonstrate significant advances for effective hydrogen production combined with cyclic catalyst regeneration via CO2 utilization, offering an eco-friendly pathway for industrial applications.</description><subject>carbon</subject><subject>carbon dioxide</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>dissociation</subject><subject>green chemistry</subject><subject>hydrogen</subject><subject>hydrogen production</subject><subject>methane</subject><subject>nanoparticles</subject><subject>nickel</subject><subject>pyrolysis</subject><subject>synergism</subject><subject>temperature</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkE1PAjEQhjdGEwnyE0x69AL2Y9stR7OKmKAQI-fN0HahuOxqP2L0H_ivLeBB5zKTmTfPzLxZdknwiGBKrkF5H73amJ1p16Nc4ZwKcZL1KBFyiHPJT__U59nA-y1OMR4zKkkv-y673cq2RqNHEzbQGlQ6UK-2XaO6c2hK0cJ1OqpguxZ92LBB5ZyiZbCN_YJDcy8rIUDz6QN6NmvTGnecLP0ecxuhQZPYHhCpfIK288ElZHRp7QJcsKox_iI7q6HxZvCb-9lycvdSToez-f1DeTMbAhE4DCUHnmsjC63GtdR1UQAXFEAxxoVRStbaUIFB1blcSU64IoxqBjWsmAItWD-7OnLfXPcejQ_VznplmiY930VfMcJZITEpaJKSozSZXG276NL9viK42jtf_XO--nWe_QAcIX59</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Zeng, Yu-Chun</creator><creator>Law, Zhi Xuan</creator><creator>Tsai, De-Hao</creator><general>American Chemical Society</general><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0002-2978-7962</orcidid><orcidid>https://orcid.org/0000-0003-3151-1076</orcidid></search><sort><creationdate>20240729</creationdate><title>Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles</title><author>Zeng, Yu-Chun ; Law, Zhi Xuan ; Tsai, De-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a160t-85a54de87dc9f8df77a562aac3356ecc8fde260acf48b8515c132d3afab3cad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>carbon</topic><topic>carbon dioxide</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>dissociation</topic><topic>green chemistry</topic><topic>hydrogen</topic><topic>hydrogen production</topic><topic>methane</topic><topic>nanoparticles</topic><topic>nickel</topic><topic>pyrolysis</topic><topic>synergism</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Yu-Chun</creatorcontrib><creatorcontrib>Law, Zhi Xuan</creatorcontrib><creatorcontrib>Tsai, De-Hao</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS sustainable chemistry & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Yu-Chun</au><au>Law, Zhi Xuan</au><au>Tsai, De-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles</atitle><jtitle>ACS sustainable chemistry & engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2024-07-29</date><risdate>2024</risdate><volume>12</volume><issue>32</issue><spage>12200</spage><epage>12215</epage><pages>12200-12215</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>A two-stage chemical looping approach is demonstrated for sustainable hydrogen production through methane decomposition (CH4 → C + 2H2) combined with cyclic catalyst regeneration via the reverse Boudouard reaction (C + CO2 → 2CO). A Ni-based spherical nanoparticle cluster, fabricated using a continuous aerosol-based synthetic approach, is developed for effective cyclic catalysis of the above two chemical reactions. A sufficiently high CO2 conversion rate for catalyst regeneration (in terms of TOF CO 2 , 36.09 h–1) and a stably high yield of hydrogen (in terms of STY H 2 , 5.19 mmol gcat –1 min–1) are achievable using the 10Ni–1Ce/5Al sample. The outstanding performance of 10Ni–1Ce/5Al is attributed to the incorporation of CeO2 as a promoter, which possesses a high redox ability that enhances catalytic activity. Additionally, the synergistic effect between nickel and ceria on the two-stage chemical looping is of crucial importance, where CeO2 promotes CO2 capture and Ni catalyzes CO2 dissociation at the Ni–CeO2 interface. CeO2-incorporated samples generating whisker carbon after methane pyrolysis demonstrate better activity for cyclic catalyst regeneration. The novelty of the work stands on developing a high-performance dual functional nanostructured catalyst using an aerosol-based synthetic route. This approach creates a massive amount of active interface, by which the two-stage reactions can be promoted under a remarkably low temperature (e.g., 600 °C). The proposed dual functional catalyst material and catalytic pathway demonstrate significant advances for effective hydrogen production combined with cyclic catalyst regeneration via CO2 utilization, offering an eco-friendly pathway for industrial applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.4c04266</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0002-2978-7962</orcidid><orcidid>https://orcid.org/0000-0003-3151-1076</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-0485 |
ispartof | ACS sustainable chemistry & engineering, 2024-07, Vol.12 (32), p.12200-12215 |
issn | 2168-0485 2168-0485 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153780172 |
source | ACS Publications |
subjects | carbon carbon dioxide catalysts catalytic activity dissociation green chemistry hydrogen hydrogen production methane nanoparticles nickel pyrolysis synergism temperature |
title | Combined Methane Cracking for H2 Production with CO2 Utilization for Catalyst Regeneration Using Dual Functional Nanostructured Particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Methane%20Cracking%20for%20H2%20Production%20with%20CO2%20Utilization%20for%20Catalyst%20Regeneration%20Using%20Dual%20Functional%20Nanostructured%20Particles&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Zeng,%20Yu-Chun&rft.date=2024-07-29&rft.volume=12&rft.issue=32&rft.spage=12200&rft.epage=12215&rft.pages=12200-12215&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.4c04266&rft_dat=%3Cproquest_acs_j%3E3153780172%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153780172&rft_id=info:pmid/&rfr_iscdi=true |