Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration

Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-04, Vol.265 (Pt 2), p.131059-131059, Article 131059
Hauptverfasser: Liu, Xuanyu, He, Xuhong, Chen, Mengjin, Wang, Yuhui, Guo, Chaiqiong, Zhang, Hao, Wang, Xin, Hao, Yanchao, Wei, Yan, Liang, Ziwei, Zhao, Liqin, Yan, Danhong, Huang, Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131059
container_issue Pt 2
container_start_page 131059
container_title International journal of biological macromolecules
container_volume 265
creator Liu, Xuanyu
He, Xuhong
Chen, Mengjin
Wang, Yuhui
Guo, Chaiqiong
Zhang, Hao
Wang, Xin
Hao, Yanchao
Wei, Yan
Liang, Ziwei
Zhao, Liqin
Yan, Danhong
Huang, Di
description Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.
doi_str_mv 10.1016/j.ijbiomac.2024.131059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153771278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024018646</els_id><sourcerecordid>2974006932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5efd8e8726af721799c506607fdb741c3903603142963c1cb49d857127140653</originalsourceid><addsrcrecordid>eNqFkc1u3CAUhVHVqpmmfYWIZTeecsE2sEsV9U-K1C6yRxhfT5jaZgp42jxC37pYTrrNAiFdvsPRPYeQK2B7YNB-OO79sfNhsm7PGa_3IIA1-gXZgZK6YoyJl2THoIZKgWAX5E1KxzJtG1CvyYVQDQch1I78_RHxZKPNPsw0DLQbrftJT_chlROXdJ1C75eJ2vHgZ5uRTt7F9REjJvrb53vahbmMbY7-Dz1j8m5EmnJcXF4i0rO3FEd0eVVF--DnAx1C3FQRDzjj5v6WvBrsmPDd431J7j5_urv5Wt1-__Lt5uNt5WoGuWpw6BUqyVs7SA5Sa9ewtmVy6DtZgxOaiZYJqLluhQPX1bpXjQQuoS7ri0vyfvv2FMOvBVM2k08Ox9HOGJZkBDRCrrh6FuVa1iVSLXhB2w1dw0kRB3OKfrLxwQAza2HmaJ4KM2thZiusCK8ePZZuwv6_7KmhAlxvAJZMzh6jSc7j7LD3saRq-uCf8_gHrGOsVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2974006932</pqid></control><display><type>article</type><title>Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xuanyu ; He, Xuhong ; Chen, Mengjin ; Wang, Yuhui ; Guo, Chaiqiong ; Zhang, Hao ; Wang, Xin ; Hao, Yanchao ; Wei, Yan ; Liang, Ziwei ; Zhao, Liqin ; Yan, Danhong ; Huang, Di</creator><creatorcontrib>Liu, Xuanyu ; He, Xuhong ; Chen, Mengjin ; Wang, Yuhui ; Guo, Chaiqiong ; Zhang, Hao ; Wang, Xin ; Hao, Yanchao ; Wei, Yan ; Liang, Ziwei ; Zhao, Liqin ; Yan, Danhong ; Huang, Di</creatorcontrib><description>Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.131059</identifier><identifier>PMID: 38521338</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>biomimetics ; biomineralization ; Black phosphorus ; bone formation ; Bone matrix vesicles ; bones ; cell proliferation ; cell viability ; collagen ; electrospraying ; humans ; hydroxyapatite ; mice ; microparticles ; nanosheets ; osteoblasts ; phosphorus ; skeletal muscle ; sodium alginate ; Sodium alginate microspheres ; survival rate</subject><ispartof>International journal of biological macromolecules, 2024-04, Vol.265 (Pt 2), p.131059-131059, Article 131059</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-5efd8e8726af721799c506607fdb741c3903603142963c1cb49d857127140653</citedby><cites>FETCH-LOGICAL-c401t-5efd8e8726af721799c506607fdb741c3903603142963c1cb49d857127140653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141813024018646$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38521338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xuanyu</creatorcontrib><creatorcontrib>He, Xuhong</creatorcontrib><creatorcontrib>Chen, Mengjin</creatorcontrib><creatorcontrib>Wang, Yuhui</creatorcontrib><creatorcontrib>Guo, Chaiqiong</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Hao, Yanchao</creatorcontrib><creatorcontrib>Wei, Yan</creatorcontrib><creatorcontrib>Liang, Ziwei</creatorcontrib><creatorcontrib>Zhao, Liqin</creatorcontrib><creatorcontrib>Yan, Danhong</creatorcontrib><creatorcontrib>Huang, Di</creatorcontrib><title>Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.</description><subject>biomimetics</subject><subject>biomineralization</subject><subject>Black phosphorus</subject><subject>bone formation</subject><subject>Bone matrix vesicles</subject><subject>bones</subject><subject>cell proliferation</subject><subject>cell viability</subject><subject>collagen</subject><subject>electrospraying</subject><subject>humans</subject><subject>hydroxyapatite</subject><subject>mice</subject><subject>microparticles</subject><subject>nanosheets</subject><subject>osteoblasts</subject><subject>phosphorus</subject><subject>skeletal muscle</subject><subject>sodium alginate</subject><subject>Sodium alginate microspheres</subject><subject>survival rate</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u3CAUhVHVqpmmfYWIZTeecsE2sEsV9U-K1C6yRxhfT5jaZgp42jxC37pYTrrNAiFdvsPRPYeQK2B7YNB-OO79sfNhsm7PGa_3IIA1-gXZgZK6YoyJl2THoIZKgWAX5E1KxzJtG1CvyYVQDQch1I78_RHxZKPNPsw0DLQbrftJT_chlROXdJ1C75eJ2vHgZ5uRTt7F9REjJvrb53vahbmMbY7-Dz1j8m5EmnJcXF4i0rO3FEd0eVVF--DnAx1C3FQRDzjj5v6WvBrsmPDd431J7j5_urv5Wt1-__Lt5uNt5WoGuWpw6BUqyVs7SA5Sa9ewtmVy6DtZgxOaiZYJqLluhQPX1bpXjQQuoS7ri0vyfvv2FMOvBVM2k08Ox9HOGJZkBDRCrrh6FuVa1iVSLXhB2w1dw0kRB3OKfrLxwQAza2HmaJ4KM2thZiusCK8ePZZuwv6_7KmhAlxvAJZMzh6jSc7j7LD3saRq-uCf8_gHrGOsVQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liu, Xuanyu</creator><creator>He, Xuhong</creator><creator>Chen, Mengjin</creator><creator>Wang, Yuhui</creator><creator>Guo, Chaiqiong</creator><creator>Zhang, Hao</creator><creator>Wang, Xin</creator><creator>Hao, Yanchao</creator><creator>Wei, Yan</creator><creator>Liang, Ziwei</creator><creator>Zhao, Liqin</creator><creator>Yan, Danhong</creator><creator>Huang, Di</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240401</creationdate><title>Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration</title><author>Liu, Xuanyu ; He, Xuhong ; Chen, Mengjin ; Wang, Yuhui ; Guo, Chaiqiong ; Zhang, Hao ; Wang, Xin ; Hao, Yanchao ; Wei, Yan ; Liang, Ziwei ; Zhao, Liqin ; Yan, Danhong ; Huang, Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5efd8e8726af721799c506607fdb741c3903603142963c1cb49d857127140653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biomimetics</topic><topic>biomineralization</topic><topic>Black phosphorus</topic><topic>bone formation</topic><topic>Bone matrix vesicles</topic><topic>bones</topic><topic>cell proliferation</topic><topic>cell viability</topic><topic>collagen</topic><topic>electrospraying</topic><topic>humans</topic><topic>hydroxyapatite</topic><topic>mice</topic><topic>microparticles</topic><topic>nanosheets</topic><topic>osteoblasts</topic><topic>phosphorus</topic><topic>skeletal muscle</topic><topic>sodium alginate</topic><topic>Sodium alginate microspheres</topic><topic>survival rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuanyu</creatorcontrib><creatorcontrib>He, Xuhong</creatorcontrib><creatorcontrib>Chen, Mengjin</creatorcontrib><creatorcontrib>Wang, Yuhui</creatorcontrib><creatorcontrib>Guo, Chaiqiong</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Hao, Yanchao</creatorcontrib><creatorcontrib>Wei, Yan</creatorcontrib><creatorcontrib>Liang, Ziwei</creatorcontrib><creatorcontrib>Zhao, Liqin</creatorcontrib><creatorcontrib>Yan, Danhong</creatorcontrib><creatorcontrib>Huang, Di</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuanyu</au><au>He, Xuhong</au><au>Chen, Mengjin</au><au>Wang, Yuhui</au><au>Guo, Chaiqiong</au><au>Zhang, Hao</au><au>Wang, Xin</au><au>Hao, Yanchao</au><au>Wei, Yan</au><au>Liang, Ziwei</au><au>Zhao, Liqin</au><au>Yan, Danhong</au><au>Huang, Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>265</volume><issue>Pt 2</issue><spage>131059</spage><epage>131059</epage><pages>131059-131059</pages><artnum>131059</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38521338</pmid><doi>10.1016/j.ijbiomac.2024.131059</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2024-04, Vol.265 (Pt 2), p.131059-131059, Article 131059
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3153771278
source Elsevier ScienceDirect Journals
subjects biomimetics
biomineralization
Black phosphorus
bone formation
Bone matrix vesicles
bones
cell proliferation
cell viability
collagen
electrospraying
humans
hydroxyapatite
mice
microparticles
nanosheets
osteoblasts
phosphorus
skeletal muscle
sodium alginate
Sodium alginate microspheres
survival rate
title Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20black%20phosphorus@sodium%20alginate%20microspheres%20with%20bone%20matrix%20vesicle%20structure%20via%20electrospraying%20for%20bone%20regeneration&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Liu,%20Xuanyu&rft.date=2024-04-01&rft.volume=265&rft.issue=Pt%202&rft.spage=131059&rft.epage=131059&rft.pages=131059-131059&rft.artnum=131059&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.131059&rft_dat=%3Cproquest_cross%3E2974006932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2974006932&rft_id=info:pmid/38521338&rft_els_id=S0141813024018646&rfr_iscdi=true