Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration
Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgam...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-04, Vol.265 (Pt 2), p.131059-131059, Article 131059 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131059 |
---|---|
container_issue | Pt 2 |
container_start_page | 131059 |
container_title | International journal of biological macromolecules |
container_volume | 265 |
creator | Liu, Xuanyu He, Xuhong Chen, Mengjin Wang, Yuhui Guo, Chaiqiong Zhang, Hao Wang, Xin Hao, Yanchao Wei, Yan Liang, Ziwei Zhao, Liqin Yan, Danhong Huang, Di |
description | Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering. |
doi_str_mv | 10.1016/j.ijbiomac.2024.131059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153771278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024018646</els_id><sourcerecordid>2974006932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5efd8e8726af721799c506607fdb741c3903603142963c1cb49d857127140653</originalsourceid><addsrcrecordid>eNqFkc1u3CAUhVHVqpmmfYWIZTeecsE2sEsV9U-K1C6yRxhfT5jaZgp42jxC37pYTrrNAiFdvsPRPYeQK2B7YNB-OO79sfNhsm7PGa_3IIA1-gXZgZK6YoyJl2THoIZKgWAX5E1KxzJtG1CvyYVQDQch1I78_RHxZKPNPsw0DLQbrftJT_chlROXdJ1C75eJ2vHgZ5uRTt7F9REjJvrb53vahbmMbY7-Dz1j8m5EmnJcXF4i0rO3FEd0eVVF--DnAx1C3FQRDzjj5v6WvBrsmPDd431J7j5_urv5Wt1-__Lt5uNt5WoGuWpw6BUqyVs7SA5Sa9ewtmVy6DtZgxOaiZYJqLluhQPX1bpXjQQuoS7ri0vyfvv2FMOvBVM2k08Ox9HOGJZkBDRCrrh6FuVa1iVSLXhB2w1dw0kRB3OKfrLxwQAza2HmaJ4KM2thZiusCK8ePZZuwv6_7KmhAlxvAJZMzh6jSc7j7LD3saRq-uCf8_gHrGOsVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2974006932</pqid></control><display><type>article</type><title>Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xuanyu ; He, Xuhong ; Chen, Mengjin ; Wang, Yuhui ; Guo, Chaiqiong ; Zhang, Hao ; Wang, Xin ; Hao, Yanchao ; Wei, Yan ; Liang, Ziwei ; Zhao, Liqin ; Yan, Danhong ; Huang, Di</creator><creatorcontrib>Liu, Xuanyu ; He, Xuhong ; Chen, Mengjin ; Wang, Yuhui ; Guo, Chaiqiong ; Zhang, Hao ; Wang, Xin ; Hao, Yanchao ; Wei, Yan ; Liang, Ziwei ; Zhao, Liqin ; Yan, Danhong ; Huang, Di</creatorcontrib><description>Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.131059</identifier><identifier>PMID: 38521338</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>biomimetics ; biomineralization ; Black phosphorus ; bone formation ; Bone matrix vesicles ; bones ; cell proliferation ; cell viability ; collagen ; electrospraying ; humans ; hydroxyapatite ; mice ; microparticles ; nanosheets ; osteoblasts ; phosphorus ; skeletal muscle ; sodium alginate ; Sodium alginate microspheres ; survival rate</subject><ispartof>International journal of biological macromolecules, 2024-04, Vol.265 (Pt 2), p.131059-131059, Article 131059</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-5efd8e8726af721799c506607fdb741c3903603142963c1cb49d857127140653</citedby><cites>FETCH-LOGICAL-c401t-5efd8e8726af721799c506607fdb741c3903603142963c1cb49d857127140653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141813024018646$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38521338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xuanyu</creatorcontrib><creatorcontrib>He, Xuhong</creatorcontrib><creatorcontrib>Chen, Mengjin</creatorcontrib><creatorcontrib>Wang, Yuhui</creatorcontrib><creatorcontrib>Guo, Chaiqiong</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Hao, Yanchao</creatorcontrib><creatorcontrib>Wei, Yan</creatorcontrib><creatorcontrib>Liang, Ziwei</creatorcontrib><creatorcontrib>Zhao, Liqin</creatorcontrib><creatorcontrib>Yan, Danhong</creatorcontrib><creatorcontrib>Huang, Di</creatorcontrib><title>Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.</description><subject>biomimetics</subject><subject>biomineralization</subject><subject>Black phosphorus</subject><subject>bone formation</subject><subject>Bone matrix vesicles</subject><subject>bones</subject><subject>cell proliferation</subject><subject>cell viability</subject><subject>collagen</subject><subject>electrospraying</subject><subject>humans</subject><subject>hydroxyapatite</subject><subject>mice</subject><subject>microparticles</subject><subject>nanosheets</subject><subject>osteoblasts</subject><subject>phosphorus</subject><subject>skeletal muscle</subject><subject>sodium alginate</subject><subject>Sodium alginate microspheres</subject><subject>survival rate</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u3CAUhVHVqpmmfYWIZTeecsE2sEsV9U-K1C6yRxhfT5jaZgp42jxC37pYTrrNAiFdvsPRPYeQK2B7YNB-OO79sfNhsm7PGa_3IIA1-gXZgZK6YoyJl2THoIZKgWAX5E1KxzJtG1CvyYVQDQch1I78_RHxZKPNPsw0DLQbrftJT_chlROXdJ1C75eJ2vHgZ5uRTt7F9REjJvrb53vahbmMbY7-Dz1j8m5EmnJcXF4i0rO3FEd0eVVF--DnAx1C3FQRDzjj5v6WvBrsmPDd431J7j5_urv5Wt1-__Lt5uNt5WoGuWpw6BUqyVs7SA5Sa9ewtmVy6DtZgxOaiZYJqLluhQPX1bpXjQQuoS7ri0vyfvv2FMOvBVM2k08Ox9HOGJZkBDRCrrh6FuVa1iVSLXhB2w1dw0kRB3OKfrLxwQAza2HmaJ4KM2thZiusCK8ePZZuwv6_7KmhAlxvAJZMzh6jSc7j7LD3saRq-uCf8_gHrGOsVQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liu, Xuanyu</creator><creator>He, Xuhong</creator><creator>Chen, Mengjin</creator><creator>Wang, Yuhui</creator><creator>Guo, Chaiqiong</creator><creator>Zhang, Hao</creator><creator>Wang, Xin</creator><creator>Hao, Yanchao</creator><creator>Wei, Yan</creator><creator>Liang, Ziwei</creator><creator>Zhao, Liqin</creator><creator>Yan, Danhong</creator><creator>Huang, Di</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240401</creationdate><title>Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration</title><author>Liu, Xuanyu ; He, Xuhong ; Chen, Mengjin ; Wang, Yuhui ; Guo, Chaiqiong ; Zhang, Hao ; Wang, Xin ; Hao, Yanchao ; Wei, Yan ; Liang, Ziwei ; Zhao, Liqin ; Yan, Danhong ; Huang, Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5efd8e8726af721799c506607fdb741c3903603142963c1cb49d857127140653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biomimetics</topic><topic>biomineralization</topic><topic>Black phosphorus</topic><topic>bone formation</topic><topic>Bone matrix vesicles</topic><topic>bones</topic><topic>cell proliferation</topic><topic>cell viability</topic><topic>collagen</topic><topic>electrospraying</topic><topic>humans</topic><topic>hydroxyapatite</topic><topic>mice</topic><topic>microparticles</topic><topic>nanosheets</topic><topic>osteoblasts</topic><topic>phosphorus</topic><topic>skeletal muscle</topic><topic>sodium alginate</topic><topic>Sodium alginate microspheres</topic><topic>survival rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuanyu</creatorcontrib><creatorcontrib>He, Xuhong</creatorcontrib><creatorcontrib>Chen, Mengjin</creatorcontrib><creatorcontrib>Wang, Yuhui</creatorcontrib><creatorcontrib>Guo, Chaiqiong</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Hao, Yanchao</creatorcontrib><creatorcontrib>Wei, Yan</creatorcontrib><creatorcontrib>Liang, Ziwei</creatorcontrib><creatorcontrib>Zhao, Liqin</creatorcontrib><creatorcontrib>Yan, Danhong</creatorcontrib><creatorcontrib>Huang, Di</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuanyu</au><au>He, Xuhong</au><au>Chen, Mengjin</au><au>Wang, Yuhui</au><au>Guo, Chaiqiong</au><au>Zhang, Hao</au><au>Wang, Xin</au><au>Hao, Yanchao</au><au>Wei, Yan</au><au>Liang, Ziwei</au><au>Zhao, Liqin</au><au>Yan, Danhong</au><au>Huang, Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>265</volume><issue>Pt 2</issue><spage>131059</spage><epage>131059</epage><pages>131059-131059</pages><artnum>131059</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38521338</pmid><doi>10.1016/j.ijbiomac.2024.131059</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2024-04, Vol.265 (Pt 2), p.131059-131059, Article 131059 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153771278 |
source | Elsevier ScienceDirect Journals |
subjects | biomimetics biomineralization Black phosphorus bone formation Bone matrix vesicles bones cell proliferation cell viability collagen electrospraying humans hydroxyapatite mice microparticles nanosheets osteoblasts phosphorus skeletal muscle sodium alginate Sodium alginate microspheres survival rate |
title | Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20black%20phosphorus@sodium%20alginate%20microspheres%20with%20bone%20matrix%20vesicle%20structure%20via%20electrospraying%20for%20bone%20regeneration&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Liu,%20Xuanyu&rft.date=2024-04-01&rft.volume=265&rft.issue=Pt%202&rft.spage=131059&rft.epage=131059&rft.pages=131059-131059&rft.artnum=131059&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.131059&rft_dat=%3Cproquest_cross%3E2974006932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2974006932&rft_id=info:pmid/38521338&rft_els_id=S0141813024018646&rfr_iscdi=true |