Analysis of the Likelihood Function and Cutoff Threshold in the GLUE Procedure for Calibration of the Resistance Parameters of Mountain Rivers

Generalized Likelihood Uncertainty Estimation (GLUE) is a widely used methodology for propagating uncertainty through models. However, GLUE has been criticized because of the random selection of two components: i) the likelihood function, which is used to determine the probability that a given set o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2024-09, Vol.38 (11), p.4361-4377
Hauptverfasser: Cedillo, Sebastián, Sánchez-Cordero, Esteban, Duque-Sarango, Paola, Timbe, Luis, Veintimilla-Reyes, Jaime, Samaniego, Esteban, Alvarado, Andrés
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4377
container_issue 11
container_start_page 4361
container_title Water resources management
container_volume 38
creator Cedillo, Sebastián
Sánchez-Cordero, Esteban
Duque-Sarango, Paola
Timbe, Luis
Veintimilla-Reyes, Jaime
Samaniego, Esteban
Alvarado, Andrés
description Generalized Likelihood Uncertainty Estimation (GLUE) is a widely used methodology for propagating uncertainty through models. However, GLUE has been criticized because of the random selection of two components: i) the likelihood function, which is used to determine the probability that a given set of parameters reflects the observed data, and ii) the cutoff threshold, which is used to divide models into behavioral and nonbehavioral groups. In this research, a GLUE procedure is implemented based on three mountain river morphologies (cascade, step-pool, and plane bed) with different flow characteristics (high, moderate and low flow) located in the Quinuas River basin. Geometry, flow, bed material, and field roughness data are available for the studied reaches. The simple Fuzzy-rule provides different results than metric-based likelihood functions, so a modification of the simple fuzzy-rule is suggested. The metric-based-likelihood functions influence likelihood curve shape and uncertainty values for a certain threshold when the system under study do not meet the model simplifications. The cutoff threshold is proven necessary for reducing uncertainty; however, this value cannot be too stringently set because there are many cases in which observations fall outside the 5% and 95% confidence intervals, producing outliers. A reasonable cutoff threshold seems to be 12%, which is the uncertainty in the water depth estimated with the continuity equation.
doi_str_mv 10.1007/s11269-024-03869-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153766303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153766303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-222e1246197a6ef8992d2f15fee868886c91361b5f37af8146487bbbc100e9e83</originalsourceid><addsrcrecordid>eNp9kUtrGzEUhUVJoU6aP5CVoJtuptFjRo-lMc4DXBqMsxaamata7lhypZmQ_In85ip2oNBFV1dcvnMOugehK0q-UULkdaaUCV0RVleEq_J6_oBmtJG8oqIhZ2hGNCNVLWv6CZ3nvCOkyDSZodd5sMNL9hlHh8ct4JX_BYPfxtjjmyl0o48B29DjxTRG5_BmmyBv49BjH4787epxiR9S7KCfEmAXE17YwbfJHqXvrmsoEaMNHeAHm-weRkjHyO9xCqMtXmv_VFaf0UdnhwyX7_MCPd4sN4u7avXj9n4xX1UdJ3ysGGNAWS2ollaAU1qznjnaOAAllFKi05QL2jaOS-sUrUWtZNu2Xfk1aFD8An09-R5S_D1BHs3e5w6GwQaIUzacNlwKUcIK-uUfdBenVK5WKKJVObeUulDsRHUp5pzAmUPye5teDCXmrSJzqsiUisyxIvNcRPwkygUOPyH9tf6P6g-vIJUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098038779</pqid></control><display><type>article</type><title>Analysis of the Likelihood Function and Cutoff Threshold in the GLUE Procedure for Calibration of the Resistance Parameters of Mountain Rivers</title><source>SpringerLink Journals</source><creator>Cedillo, Sebastián ; Sánchez-Cordero, Esteban ; Duque-Sarango, Paola ; Timbe, Luis ; Veintimilla-Reyes, Jaime ; Samaniego, Esteban ; Alvarado, Andrés</creator><creatorcontrib>Cedillo, Sebastián ; Sánchez-Cordero, Esteban ; Duque-Sarango, Paola ; Timbe, Luis ; Veintimilla-Reyes, Jaime ; Samaniego, Esteban ; Alvarado, Andrés</creatorcontrib><description>Generalized Likelihood Uncertainty Estimation (GLUE) is a widely used methodology for propagating uncertainty through models. However, GLUE has been criticized because of the random selection of two components: i) the likelihood function, which is used to determine the probability that a given set of parameters reflects the observed data, and ii) the cutoff threshold, which is used to divide models into behavioral and nonbehavioral groups. In this research, a GLUE procedure is implemented based on three mountain river morphologies (cascade, step-pool, and plane bed) with different flow characteristics (high, moderate and low flow) located in the Quinuas River basin. Geometry, flow, bed material, and field roughness data are available for the studied reaches. The simple Fuzzy-rule provides different results than metric-based likelihood functions, so a modification of the simple fuzzy-rule is suggested. The metric-based-likelihood functions influence likelihood curve shape and uncertainty values for a certain threshold when the system under study do not meet the model simplifications. The cutoff threshold is proven necessary for reducing uncertainty; however, this value cannot be too stringently set because there are many cases in which observations fall outside the 5% and 95% confidence intervals, producing outliers. A reasonable cutoff threshold seems to be 12%, which is the uncertainty in the water depth estimated with the continuity equation.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-024-03869-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Sciences ; Bed material ; Calibration ; Civil Engineering ; Confidence intervals ; Continuity equation ; Earth and Environmental Science ; Earth Sciences ; Environment ; equations ; Floods ; Flow characteristics ; geometry ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Low flow ; Mountains ; Outliers (statistics) ; Parameter estimation ; Parameter uncertainty ; Parameters ; River basins ; Rivers ; roughness ; Statistical analysis ; Stormwater management ; Uncertainty ; Uncertainty analysis ; water ; Water depth ; watersheds</subject><ispartof>Water resources management, 2024-09, Vol.38 (11), p.4361-4377</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-222e1246197a6ef8992d2f15fee868886c91361b5f37af8146487bbbc100e9e83</cites><orcidid>0000-0001-6866-8937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-024-03869-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-024-03869-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cedillo, Sebastián</creatorcontrib><creatorcontrib>Sánchez-Cordero, Esteban</creatorcontrib><creatorcontrib>Duque-Sarango, Paola</creatorcontrib><creatorcontrib>Timbe, Luis</creatorcontrib><creatorcontrib>Veintimilla-Reyes, Jaime</creatorcontrib><creatorcontrib>Samaniego, Esteban</creatorcontrib><creatorcontrib>Alvarado, Andrés</creatorcontrib><title>Analysis of the Likelihood Function and Cutoff Threshold in the GLUE Procedure for Calibration of the Resistance Parameters of Mountain Rivers</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Generalized Likelihood Uncertainty Estimation (GLUE) is a widely used methodology for propagating uncertainty through models. However, GLUE has been criticized because of the random selection of two components: i) the likelihood function, which is used to determine the probability that a given set of parameters reflects the observed data, and ii) the cutoff threshold, which is used to divide models into behavioral and nonbehavioral groups. In this research, a GLUE procedure is implemented based on three mountain river morphologies (cascade, step-pool, and plane bed) with different flow characteristics (high, moderate and low flow) located in the Quinuas River basin. Geometry, flow, bed material, and field roughness data are available for the studied reaches. The simple Fuzzy-rule provides different results than metric-based likelihood functions, so a modification of the simple fuzzy-rule is suggested. The metric-based-likelihood functions influence likelihood curve shape and uncertainty values for a certain threshold when the system under study do not meet the model simplifications. The cutoff threshold is proven necessary for reducing uncertainty; however, this value cannot be too stringently set because there are many cases in which observations fall outside the 5% and 95% confidence intervals, producing outliers. A reasonable cutoff threshold seems to be 12%, which is the uncertainty in the water depth estimated with the continuity equation.</description><subject>Atmospheric Sciences</subject><subject>Bed material</subject><subject>Calibration</subject><subject>Civil Engineering</subject><subject>Confidence intervals</subject><subject>Continuity equation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>equations</subject><subject>Floods</subject><subject>Flow characteristics</subject><subject>geometry</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Low flow</subject><subject>Mountains</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Parameters</subject><subject>River basins</subject><subject>Rivers</subject><subject>roughness</subject><subject>Statistical analysis</subject><subject>Stormwater management</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>water</subject><subject>Water depth</subject><subject>watersheds</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtrGzEUhUVJoU6aP5CVoJtuptFjRo-lMc4DXBqMsxaamata7lhypZmQ_In85ip2oNBFV1dcvnMOugehK0q-UULkdaaUCV0RVleEq_J6_oBmtJG8oqIhZ2hGNCNVLWv6CZ3nvCOkyDSZodd5sMNL9hlHh8ct4JX_BYPfxtjjmyl0o48B29DjxTRG5_BmmyBv49BjH4787epxiR9S7KCfEmAXE17YwbfJHqXvrmsoEaMNHeAHm-weRkjHyO9xCqMtXmv_VFaf0UdnhwyX7_MCPd4sN4u7avXj9n4xX1UdJ3ysGGNAWS2ollaAU1qznjnaOAAllFKi05QL2jaOS-sUrUWtZNu2Xfk1aFD8An09-R5S_D1BHs3e5w6GwQaIUzacNlwKUcIK-uUfdBenVK5WKKJVObeUulDsRHUp5pzAmUPye5teDCXmrSJzqsiUisyxIvNcRPwkygUOPyH9tf6P6g-vIJUA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Cedillo, Sebastián</creator><creator>Sánchez-Cordero, Esteban</creator><creator>Duque-Sarango, Paola</creator><creator>Timbe, Luis</creator><creator>Veintimilla-Reyes, Jaime</creator><creator>Samaniego, Esteban</creator><creator>Alvarado, Andrés</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6866-8937</orcidid></search><sort><creationdate>20240901</creationdate><title>Analysis of the Likelihood Function and Cutoff Threshold in the GLUE Procedure for Calibration of the Resistance Parameters of Mountain Rivers</title><author>Cedillo, Sebastián ; Sánchez-Cordero, Esteban ; Duque-Sarango, Paola ; Timbe, Luis ; Veintimilla-Reyes, Jaime ; Samaniego, Esteban ; Alvarado, Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-222e1246197a6ef8992d2f15fee868886c91361b5f37af8146487bbbc100e9e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric Sciences</topic><topic>Bed material</topic><topic>Calibration</topic><topic>Civil Engineering</topic><topic>Confidence intervals</topic><topic>Continuity equation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>equations</topic><topic>Floods</topic><topic>Flow characteristics</topic><topic>geometry</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Low flow</topic><topic>Mountains</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Parameters</topic><topic>River basins</topic><topic>Rivers</topic><topic>roughness</topic><topic>Statistical analysis</topic><topic>Stormwater management</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>water</topic><topic>Water depth</topic><topic>watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cedillo, Sebastián</creatorcontrib><creatorcontrib>Sánchez-Cordero, Esteban</creatorcontrib><creatorcontrib>Duque-Sarango, Paola</creatorcontrib><creatorcontrib>Timbe, Luis</creatorcontrib><creatorcontrib>Veintimilla-Reyes, Jaime</creatorcontrib><creatorcontrib>Samaniego, Esteban</creatorcontrib><creatorcontrib>Alvarado, Andrés</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cedillo, Sebastián</au><au>Sánchez-Cordero, Esteban</au><au>Duque-Sarango, Paola</au><au>Timbe, Luis</au><au>Veintimilla-Reyes, Jaime</au><au>Samaniego, Esteban</au><au>Alvarado, Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Likelihood Function and Cutoff Threshold in the GLUE Procedure for Calibration of the Resistance Parameters of Mountain Rivers</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>38</volume><issue>11</issue><spage>4361</spage><epage>4377</epage><pages>4361-4377</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>Generalized Likelihood Uncertainty Estimation (GLUE) is a widely used methodology for propagating uncertainty through models. However, GLUE has been criticized because of the random selection of two components: i) the likelihood function, which is used to determine the probability that a given set of parameters reflects the observed data, and ii) the cutoff threshold, which is used to divide models into behavioral and nonbehavioral groups. In this research, a GLUE procedure is implemented based on three mountain river morphologies (cascade, step-pool, and plane bed) with different flow characteristics (high, moderate and low flow) located in the Quinuas River basin. Geometry, flow, bed material, and field roughness data are available for the studied reaches. The simple Fuzzy-rule provides different results than metric-based likelihood functions, so a modification of the simple fuzzy-rule is suggested. The metric-based-likelihood functions influence likelihood curve shape and uncertainty values for a certain threshold when the system under study do not meet the model simplifications. The cutoff threshold is proven necessary for reducing uncertainty; however, this value cannot be too stringently set because there are many cases in which observations fall outside the 5% and 95% confidence intervals, producing outliers. A reasonable cutoff threshold seems to be 12%, which is the uncertainty in the water depth estimated with the continuity equation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-024-03869-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6866-8937</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2024-09, Vol.38 (11), p.4361-4377
issn 0920-4741
1573-1650
language eng
recordid cdi_proquest_miscellaneous_3153766303
source SpringerLink Journals
subjects Atmospheric Sciences
Bed material
Calibration
Civil Engineering
Confidence intervals
Continuity equation
Earth and Environmental Science
Earth Sciences
Environment
equations
Floods
Flow characteristics
geometry
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Low flow
Mountains
Outliers (statistics)
Parameter estimation
Parameter uncertainty
Parameters
River basins
Rivers
roughness
Statistical analysis
Stormwater management
Uncertainty
Uncertainty analysis
water
Water depth
watersheds
title Analysis of the Likelihood Function and Cutoff Threshold in the GLUE Procedure for Calibration of the Resistance Parameters of Mountain Rivers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Likelihood%20Function%20and%20Cutoff%20Threshold%20in%20the%20GLUE%20Procedure%20for%20Calibration%20of%20the%20Resistance%20Parameters%20of%20Mountain%20Rivers&rft.jtitle=Water%20resources%20management&rft.au=Cedillo,%20Sebasti%C3%A1n&rft.date=2024-09-01&rft.volume=38&rft.issue=11&rft.spage=4361&rft.epage=4377&rft.pages=4361-4377&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-024-03869-x&rft_dat=%3Cproquest_cross%3E3153766303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098038779&rft_id=info:pmid/&rfr_iscdi=true