In vivo assembly in tobacco cells to elucidate and engineer the biosynthesis of 4-hydroxydihydrocinnamaldehyde from Gloriosa superba
Key message This study described the biosynthesis of 4-hydroxydihydrocinnamaldehyde sharing with monolignol pathway and supplemented the biosynthesis of colchicine in G. superba , 4-hydroxydihydrocinnamaldehyde produced in tobacco BY2 cells provided an important stepstone. The precursor, 4-hydroxydi...
Gespeichert in:
Veröffentlicht in: | Plant cell reports 2024-10, Vol.43 (10), p.235-235, Article 235 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | 10 |
container_start_page | 235 |
container_title | Plant cell reports |
container_volume | 43 |
creator | Xiong, Zhiqiang Ding, Zhuoying Sun, Jingyi Jiang, Xuefei Cong, Hanqing Sun, Huapeng Qiao, Fei |
description | Key message
This study described the biosynthesis of 4-hydroxydihydrocinnamaldehyde sharing with monolignol pathway and supplemented the biosynthesis of colchicine in G.
superba
, 4-hydroxydihydrocinnamaldehyde produced in tobacco BY2 cells provided an important stepstone.
The precursor, 4-hydroxydihydrocinnamaldehyde (4-HDCA), participates in the biosynthesis of the carbon skeleton of colchicine, which is derived from L-phenylalanine. However, one hypothesis proposed that 4-HDCA is synthesized by sharing the early part of the monolignol pathway in
G. superba
. In this study, we validated this prediction and identified the enzymatic functions involved in this pathway.
Gs
DBR1 is a crucial enzyme to illustrate 4-HDCA diverging from monolignol pathway, we first confirmed its reductase activity on 4-coumaraldehyde, an important intermediate compound in monolignol biosynthesis. Then, the biochemical function of recombinant enzymes belonging to the other four families were verified to elucidate the entire process of 4-HDCA biosynthesis from L-phenylalanine
.
After reconstruction, the 4-HDCA was 78.4 ng/g with fresh weight (FW) of transgenic tobacco cells, and the yield increased to 168.22 ng/g·FW after improved treatment with methyl jasmonate (MeJA). The elucidation of 4-HDCA biosynthesis sharing the monolignol pathway supplemented the biosynthesis of colchicine in
G. superba,
and the production of 4-HDCA in tobacco cells provides an important step in the development of plant cell cultures as heterologous bio-factories for secondary metabolite production. |
doi_str_mv | 10.1007/s00299-024-03318-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153765871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153765871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f7b49c1e8316d7ec00692358324fe0dfffe48db08a6c17ed64ab0454c41655bd3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS1ERZctX4ADssSlF8P4T-LkiCpoK1XiQqXeIseetK4Se7GTqrnzwfF2C0gcEL54RvN7zxo_Qt5y-MAB9McMINqWgVAMpOQNUy_IhispmAB585JsQAvOtObqmLzO-R6gDHX9ihzLtghbLTbkx2WgD_4hUpMzTv24Uh_oHHtjbaQWxzGXjuK4WO_MjNQERzHc-oCY6HyHtPcxr6FU2WcaB6rY3epSfFydfyqsD8FMZnRYWqRDihM9H2MqMkPzssPUmxNyNJgx45vne0uuv3z-dnbBrr6eX559umJWNO3MBt2r1nJsJK-dRgtQt0JWjRRqQHDDMKBqXA-NqS3X6GplelCVsorXVdU7uSWnB99dit8XzHM3-bxf0gSMS-4kr8r_VI3m_4GC5pWW5WzJ-7_Q-7ikUBbZU3VTiQpEocSBsinmnHDodslPJq0dh24fZ3eIsytxdk9xdqqI3j1bL_2E7rfkV34FkAcgl1G4xfTn7X_Y_gSdsKx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106852502</pqid></control><display><type>article</type><title>In vivo assembly in tobacco cells to elucidate and engineer the biosynthesis of 4-hydroxydihydrocinnamaldehyde from Gloriosa superba</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Xiong, Zhiqiang ; Ding, Zhuoying ; Sun, Jingyi ; Jiang, Xuefei ; Cong, Hanqing ; Sun, Huapeng ; Qiao, Fei</creator><creatorcontrib>Xiong, Zhiqiang ; Ding, Zhuoying ; Sun, Jingyi ; Jiang, Xuefei ; Cong, Hanqing ; Sun, Huapeng ; Qiao, Fei</creatorcontrib><description>Key message
This study described the biosynthesis of 4-hydroxydihydrocinnamaldehyde sharing with monolignol pathway and supplemented the biosynthesis of colchicine in G.
superba
, 4-hydroxydihydrocinnamaldehyde produced in tobacco BY2 cells provided an important stepstone.
The precursor, 4-hydroxydihydrocinnamaldehyde (4-HDCA), participates in the biosynthesis of the carbon skeleton of colchicine, which is derived from L-phenylalanine. However, one hypothesis proposed that 4-HDCA is synthesized by sharing the early part of the monolignol pathway in
G. superba
. In this study, we validated this prediction and identified the enzymatic functions involved in this pathway.
Gs
DBR1 is a crucial enzyme to illustrate 4-HDCA diverging from monolignol pathway, we first confirmed its reductase activity on 4-coumaraldehyde, an important intermediate compound in monolignol biosynthesis. Then, the biochemical function of recombinant enzymes belonging to the other four families were verified to elucidate the entire process of 4-HDCA biosynthesis from L-phenylalanine
.
After reconstruction, the 4-HDCA was 78.4 ng/g with fresh weight (FW) of transgenic tobacco cells, and the yield increased to 168.22 ng/g·FW after improved treatment with methyl jasmonate (MeJA). The elucidation of 4-HDCA biosynthesis sharing the monolignol pathway supplemented the biosynthesis of colchicine in
G. superba,
and the production of 4-HDCA in tobacco cells provides an important step in the development of plant cell cultures as heterologous bio-factories for secondary metabolite production.</description><identifier>ISSN: 0721-7714</identifier><identifier>ISSN: 1432-203X</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-024-03318-4</identifier><identifier>PMID: 39299972</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetates - metabolism ; Acetates - pharmacology ; Aldehydes - metabolism ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; carbon ; Cell Biology ; Colchicine ; Cyclopentanes - metabolism ; Cyclopentanes - pharmacology ; genetically modified organisms ; Gloriosa superba ; In vivo methods and tests ; Industrial engineering ; Life Sciences ; Metabolites ; Methyl jasmonate ; Nicotiana - genetics ; Nicotiana - metabolism ; Original Article ; oxidoreductases ; Oxylipins - metabolism ; Oxylipins - pharmacology ; Phenylalanine ; Phenylalanine - metabolism ; Plant Biochemistry ; Plant cells ; Plant layout ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plants, Genetically Modified ; prediction ; Reductases ; secondary metabolites ; Tobacco ; Transgenic plants</subject><ispartof>Plant cell reports, 2024-10, Vol.43 (10), p.235-235, Article 235</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-f7b49c1e8316d7ec00692358324fe0dfffe48db08a6c17ed64ab0454c41655bd3</cites><orcidid>0000-0001-7585-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-024-03318-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-024-03318-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39299972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Zhiqiang</creatorcontrib><creatorcontrib>Ding, Zhuoying</creatorcontrib><creatorcontrib>Sun, Jingyi</creatorcontrib><creatorcontrib>Jiang, Xuefei</creatorcontrib><creatorcontrib>Cong, Hanqing</creatorcontrib><creatorcontrib>Sun, Huapeng</creatorcontrib><creatorcontrib>Qiao, Fei</creatorcontrib><title>In vivo assembly in tobacco cells to elucidate and engineer the biosynthesis of 4-hydroxydihydrocinnamaldehyde from Gloriosa superba</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message
This study described the biosynthesis of 4-hydroxydihydrocinnamaldehyde sharing with monolignol pathway and supplemented the biosynthesis of colchicine in G.
superba
, 4-hydroxydihydrocinnamaldehyde produced in tobacco BY2 cells provided an important stepstone.
The precursor, 4-hydroxydihydrocinnamaldehyde (4-HDCA), participates in the biosynthesis of the carbon skeleton of colchicine, which is derived from L-phenylalanine. However, one hypothesis proposed that 4-HDCA is synthesized by sharing the early part of the monolignol pathway in
G. superba
. In this study, we validated this prediction and identified the enzymatic functions involved in this pathway.
Gs
DBR1 is a crucial enzyme to illustrate 4-HDCA diverging from monolignol pathway, we first confirmed its reductase activity on 4-coumaraldehyde, an important intermediate compound in monolignol biosynthesis. Then, the biochemical function of recombinant enzymes belonging to the other four families were verified to elucidate the entire process of 4-HDCA biosynthesis from L-phenylalanine
.
After reconstruction, the 4-HDCA was 78.4 ng/g with fresh weight (FW) of transgenic tobacco cells, and the yield increased to 168.22 ng/g·FW after improved treatment with methyl jasmonate (MeJA). The elucidation of 4-HDCA biosynthesis sharing the monolignol pathway supplemented the biosynthesis of colchicine in
G. superba,
and the production of 4-HDCA in tobacco cells provides an important step in the development of plant cell cultures as heterologous bio-factories for secondary metabolite production.</description><subject>Acetates - metabolism</subject><subject>Acetates - pharmacology</subject><subject>Aldehydes - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>carbon</subject><subject>Cell Biology</subject><subject>Colchicine</subject><subject>Cyclopentanes - metabolism</subject><subject>Cyclopentanes - pharmacology</subject><subject>genetically modified organisms</subject><subject>Gloriosa superba</subject><subject>In vivo methods and tests</subject><subject>Industrial engineering</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Methyl jasmonate</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Original Article</subject><subject>oxidoreductases</subject><subject>Oxylipins - metabolism</subject><subject>Oxylipins - pharmacology</subject><subject>Phenylalanine</subject><subject>Phenylalanine - metabolism</subject><subject>Plant Biochemistry</subject><subject>Plant cells</subject><subject>Plant layout</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified</subject><subject>prediction</subject><subject>Reductases</subject><subject>secondary metabolites</subject><subject>Tobacco</subject><subject>Transgenic plants</subject><issn>0721-7714</issn><issn>1432-203X</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS1ERZctX4ADssSlF8P4T-LkiCpoK1XiQqXeIseetK4Se7GTqrnzwfF2C0gcEL54RvN7zxo_Qt5y-MAB9McMINqWgVAMpOQNUy_IhispmAB585JsQAvOtObqmLzO-R6gDHX9ihzLtghbLTbkx2WgD_4hUpMzTv24Uh_oHHtjbaQWxzGXjuK4WO_MjNQERzHc-oCY6HyHtPcxr6FU2WcaB6rY3epSfFydfyqsD8FMZnRYWqRDihM9H2MqMkPzssPUmxNyNJgx45vne0uuv3z-dnbBrr6eX559umJWNO3MBt2r1nJsJK-dRgtQt0JWjRRqQHDDMKBqXA-NqS3X6GplelCVsorXVdU7uSWnB99dit8XzHM3-bxf0gSMS-4kr8r_VI3m_4GC5pWW5WzJ-7_Q-7ikUBbZU3VTiQpEocSBsinmnHDodslPJq0dh24fZ3eIsytxdk9xdqqI3j1bL_2E7rfkV34FkAcgl1G4xfTn7X_Y_gSdsKx0</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Xiong, Zhiqiang</creator><creator>Ding, Zhuoying</creator><creator>Sun, Jingyi</creator><creator>Jiang, Xuefei</creator><creator>Cong, Hanqing</creator><creator>Sun, Huapeng</creator><creator>Qiao, Fei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7585-0040</orcidid></search><sort><creationdate>20241001</creationdate><title>In vivo assembly in tobacco cells to elucidate and engineer the biosynthesis of 4-hydroxydihydrocinnamaldehyde from Gloriosa superba</title><author>Xiong, Zhiqiang ; Ding, Zhuoying ; Sun, Jingyi ; Jiang, Xuefei ; Cong, Hanqing ; Sun, Huapeng ; Qiao, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f7b49c1e8316d7ec00692358324fe0dfffe48db08a6c17ed64ab0454c41655bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetates - metabolism</topic><topic>Acetates - pharmacology</topic><topic>Aldehydes - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>carbon</topic><topic>Cell Biology</topic><topic>Colchicine</topic><topic>Cyclopentanes - metabolism</topic><topic>Cyclopentanes - pharmacology</topic><topic>genetically modified organisms</topic><topic>Gloriosa superba</topic><topic>In vivo methods and tests</topic><topic>Industrial engineering</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Methyl jasmonate</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Original Article</topic><topic>oxidoreductases</topic><topic>Oxylipins - metabolism</topic><topic>Oxylipins - pharmacology</topic><topic>Phenylalanine</topic><topic>Phenylalanine - metabolism</topic><topic>Plant Biochemistry</topic><topic>Plant cells</topic><topic>Plant layout</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified</topic><topic>prediction</topic><topic>Reductases</topic><topic>secondary metabolites</topic><topic>Tobacco</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Zhiqiang</creatorcontrib><creatorcontrib>Ding, Zhuoying</creatorcontrib><creatorcontrib>Sun, Jingyi</creatorcontrib><creatorcontrib>Jiang, Xuefei</creatorcontrib><creatorcontrib>Cong, Hanqing</creatorcontrib><creatorcontrib>Sun, Huapeng</creatorcontrib><creatorcontrib>Qiao, Fei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Zhiqiang</au><au>Ding, Zhuoying</au><au>Sun, Jingyi</au><au>Jiang, Xuefei</au><au>Cong, Hanqing</au><au>Sun, Huapeng</au><au>Qiao, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo assembly in tobacco cells to elucidate and engineer the biosynthesis of 4-hydroxydihydrocinnamaldehyde from Gloriosa superba</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>43</volume><issue>10</issue><spage>235</spage><epage>235</epage><pages>235-235</pages><artnum>235</artnum><issn>0721-7714</issn><issn>1432-203X</issn><eissn>1432-203X</eissn><abstract>Key message
This study described the biosynthesis of 4-hydroxydihydrocinnamaldehyde sharing with monolignol pathway and supplemented the biosynthesis of colchicine in G.
superba
, 4-hydroxydihydrocinnamaldehyde produced in tobacco BY2 cells provided an important stepstone.
The precursor, 4-hydroxydihydrocinnamaldehyde (4-HDCA), participates in the biosynthesis of the carbon skeleton of colchicine, which is derived from L-phenylalanine. However, one hypothesis proposed that 4-HDCA is synthesized by sharing the early part of the monolignol pathway in
G. superba
. In this study, we validated this prediction and identified the enzymatic functions involved in this pathway.
Gs
DBR1 is a crucial enzyme to illustrate 4-HDCA diverging from monolignol pathway, we first confirmed its reductase activity on 4-coumaraldehyde, an important intermediate compound in monolignol biosynthesis. Then, the biochemical function of recombinant enzymes belonging to the other four families were verified to elucidate the entire process of 4-HDCA biosynthesis from L-phenylalanine
.
After reconstruction, the 4-HDCA was 78.4 ng/g with fresh weight (FW) of transgenic tobacco cells, and the yield increased to 168.22 ng/g·FW after improved treatment with methyl jasmonate (MeJA). The elucidation of 4-HDCA biosynthesis sharing the monolignol pathway supplemented the biosynthesis of colchicine in
G. superba,
and the production of 4-HDCA in tobacco cells provides an important step in the development of plant cell cultures as heterologous bio-factories for secondary metabolite production.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39299972</pmid><doi>10.1007/s00299-024-03318-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7585-0040</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-7714 |
ispartof | Plant cell reports, 2024-10, Vol.43 (10), p.235-235, Article 235 |
issn | 0721-7714 1432-203X 1432-203X |
language | eng |
recordid | cdi_proquest_miscellaneous_3153765871 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Acetates - metabolism Acetates - pharmacology Aldehydes - metabolism Biomedical and Life Sciences Biosynthesis Biotechnology carbon Cell Biology Colchicine Cyclopentanes - metabolism Cyclopentanes - pharmacology genetically modified organisms Gloriosa superba In vivo methods and tests Industrial engineering Life Sciences Metabolites Methyl jasmonate Nicotiana - genetics Nicotiana - metabolism Original Article oxidoreductases Oxylipins - metabolism Oxylipins - pharmacology Phenylalanine Phenylalanine - metabolism Plant Biochemistry Plant cells Plant layout Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Plants, Genetically Modified prediction Reductases secondary metabolites Tobacco Transgenic plants |
title | In vivo assembly in tobacco cells to elucidate and engineer the biosynthesis of 4-hydroxydihydrocinnamaldehyde from Gloriosa superba |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20assembly%20in%20tobacco%20cells%20to%20elucidate%20and%20engineer%20the%20biosynthesis%20of%204-hydroxydihydrocinnamaldehyde%20from%20Gloriosa%20superba&rft.jtitle=Plant%20cell%20reports&rft.au=Xiong,%20Zhiqiang&rft.date=2024-10-01&rft.volume=43&rft.issue=10&rft.spage=235&rft.epage=235&rft.pages=235-235&rft.artnum=235&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-024-03318-4&rft_dat=%3Cproquest_cross%3E3153765871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106852502&rft_id=info:pmid/39299972&rfr_iscdi=true |