Pattern Recognition for Capillary-Driven Extensional Flows

Understanding and analyzing capillary-driven extensional flow dynamics are crucial for applications like inkjet printing and emulsion formation. However, the spatiotemporal shapes of complex fluids as they stretch have been partially analyzed by conventional methods that measure only single points i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2024-09, Vol.63 (35), p.15524-15533
Hauptverfasser: Im, Minhyuk, Jang, Junhyeong, Kim, Ju Min, Nam, Jaewook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15533
container_issue 35
container_start_page 15524
container_title Industrial & engineering chemistry research
container_volume 63
creator Im, Minhyuk
Jang, Junhyeong
Kim, Ju Min
Nam, Jaewook
description Understanding and analyzing capillary-driven extensional flow dynamics are crucial for applications like inkjet printing and emulsion formation. However, the spatiotemporal shapes of complex fluids as they stretch have been partially analyzed by conventional methods that measure only single points in the slender jet approximation, even though these shapes contain important rheological information. We introduce a new approach that integrates machine learning and flow visualization to classify and estimate fluid composition without relying on traditional rheological models. Our method utilizes captured images using dripping onto substrate capillary breakup extensional rheometry, which specializes in observing the spatiotemporal dynamics of capillary-driven extensional flows. Through these images, we introduce “eigenthinning” extracted via principal component analysis, enabling fluid classification and composition estimation. A k-nearest neighbor classification achieves nearly 100% accuracy using a few principal components (PCs). We extend this to multicomponent fluid composition estimation with promising results. Our model suggests potential improvement through deep learning integration and an adaptive weighting strategy. We also explore using PCs to augment training data sets, enhancing data diversity, and facilitating comprehensive analysis.
doi_str_mv 10.1021/acs.iecr.4c02084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153764679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153764679</sourcerecordid><originalsourceid>FETCH-LOGICAL-a196t-339d42ece4a6c9d62627b369b34a5f6f71ebc3e0e444bfc6f0c931545e872ebe3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM2ZkIOX8GYcNlRaQKoEQzJbjnlGqNC52yse_x1W7Mt3wPu_p7iHkksKEAqM31qVJiy5OhAMGWhyREZUMSglCHpMRaK1LqbU8JWcprQBASiFG5PbFDgPGvnhFFz76dmhDX_gQi6ndtF1n4295H9sv7IvZz4B9yrHtinkXvtM5OfG2S3hxmGPyPp-9TR_LxfPD0_RuUVpaq6HkvF4Khg6FVa5eKqZY1XBVN1xY6ZWvKDaOI6AQovFOeXA1p1JI1BXDBvmYXO33bmL43GIazLpNDvNxPYZtMhnmlRKqqjMKe9TFkFJEbzaxXecnDAWz02SyJrPTZA6acuV6X9klq7CN-b_0P_4HkuJryw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153764679</pqid></control><display><type>article</type><title>Pattern Recognition for Capillary-Driven Extensional Flows</title><source>ACS Publications</source><creator>Im, Minhyuk ; Jang, Junhyeong ; Kim, Ju Min ; Nam, Jaewook</creator><creatorcontrib>Im, Minhyuk ; Jang, Junhyeong ; Kim, Ju Min ; Nam, Jaewook</creatorcontrib><description>Understanding and analyzing capillary-driven extensional flow dynamics are crucial for applications like inkjet printing and emulsion formation. However, the spatiotemporal shapes of complex fluids as they stretch have been partially analyzed by conventional methods that measure only single points in the slender jet approximation, even though these shapes contain important rheological information. We introduce a new approach that integrates machine learning and flow visualization to classify and estimate fluid composition without relying on traditional rheological models. Our method utilizes captured images using dripping onto substrate capillary breakup extensional rheometry, which specializes in observing the spatiotemporal dynamics of capillary-driven extensional flows. Through these images, we introduce “eigenthinning” extracted via principal component analysis, enabling fluid classification and composition estimation. A k-nearest neighbor classification achieves nearly 100% accuracy using a few principal components (PCs). We extend this to multicomponent fluid composition estimation with promising results. Our model suggests potential improvement through deep learning integration and an adaptive weighting strategy. We also explore using PCs to augment training data sets, enhancing data diversity, and facilitating comprehensive analysis.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.4c02084</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>emulsions ; hydrodynamics ; Materials and Interfaces ; principal component analysis ; rheometry</subject><ispartof>Industrial &amp; engineering chemistry research, 2024-09, Vol.63 (35), p.15524-15533</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a196t-339d42ece4a6c9d62627b369b34a5f6f71ebc3e0e444bfc6f0c931545e872ebe3</cites><orcidid>0000-0002-2482-0842 ; 0000-0001-6821-461X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.4c02084$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.4c02084$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Im, Minhyuk</creatorcontrib><creatorcontrib>Jang, Junhyeong</creatorcontrib><creatorcontrib>Kim, Ju Min</creatorcontrib><creatorcontrib>Nam, Jaewook</creatorcontrib><title>Pattern Recognition for Capillary-Driven Extensional Flows</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Understanding and analyzing capillary-driven extensional flow dynamics are crucial for applications like inkjet printing and emulsion formation. However, the spatiotemporal shapes of complex fluids as they stretch have been partially analyzed by conventional methods that measure only single points in the slender jet approximation, even though these shapes contain important rheological information. We introduce a new approach that integrates machine learning and flow visualization to classify and estimate fluid composition without relying on traditional rheological models. Our method utilizes captured images using dripping onto substrate capillary breakup extensional rheometry, which specializes in observing the spatiotemporal dynamics of capillary-driven extensional flows. Through these images, we introduce “eigenthinning” extracted via principal component analysis, enabling fluid classification and composition estimation. A k-nearest neighbor classification achieves nearly 100% accuracy using a few principal components (PCs). We extend this to multicomponent fluid composition estimation with promising results. Our model suggests potential improvement through deep learning integration and an adaptive weighting strategy. We also explore using PCs to augment training data sets, enhancing data diversity, and facilitating comprehensive analysis.</description><subject>emulsions</subject><subject>hydrodynamics</subject><subject>Materials and Interfaces</subject><subject>principal component analysis</subject><subject>rheometry</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM2ZkIOX8GYcNlRaQKoEQzJbjnlGqNC52yse_x1W7Mt3wPu_p7iHkksKEAqM31qVJiy5OhAMGWhyREZUMSglCHpMRaK1LqbU8JWcprQBASiFG5PbFDgPGvnhFFz76dmhDX_gQi6ndtF1n4295H9sv7IvZz4B9yrHtinkXvtM5OfG2S3hxmGPyPp-9TR_LxfPD0_RuUVpaq6HkvF4Khg6FVa5eKqZY1XBVN1xY6ZWvKDaOI6AQovFOeXA1p1JI1BXDBvmYXO33bmL43GIazLpNDvNxPYZtMhnmlRKqqjMKe9TFkFJEbzaxXecnDAWz02SyJrPTZA6acuV6X9klq7CN-b_0P_4HkuJryw</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Im, Minhyuk</creator><creator>Jang, Junhyeong</creator><creator>Kim, Ju Min</creator><creator>Nam, Jaewook</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2482-0842</orcidid><orcidid>https://orcid.org/0000-0001-6821-461X</orcidid></search><sort><creationdate>20240904</creationdate><title>Pattern Recognition for Capillary-Driven Extensional Flows</title><author>Im, Minhyuk ; Jang, Junhyeong ; Kim, Ju Min ; Nam, Jaewook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a196t-339d42ece4a6c9d62627b369b34a5f6f71ebc3e0e444bfc6f0c931545e872ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>emulsions</topic><topic>hydrodynamics</topic><topic>Materials and Interfaces</topic><topic>principal component analysis</topic><topic>rheometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Im, Minhyuk</creatorcontrib><creatorcontrib>Jang, Junhyeong</creatorcontrib><creatorcontrib>Kim, Ju Min</creatorcontrib><creatorcontrib>Nam, Jaewook</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Im, Minhyuk</au><au>Jang, Junhyeong</au><au>Kim, Ju Min</au><au>Nam, Jaewook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern Recognition for Capillary-Driven Extensional Flows</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2024-09-04</date><risdate>2024</risdate><volume>63</volume><issue>35</issue><spage>15524</spage><epage>15533</epage><pages>15524-15533</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>Understanding and analyzing capillary-driven extensional flow dynamics are crucial for applications like inkjet printing and emulsion formation. However, the spatiotemporal shapes of complex fluids as they stretch have been partially analyzed by conventional methods that measure only single points in the slender jet approximation, even though these shapes contain important rheological information. We introduce a new approach that integrates machine learning and flow visualization to classify and estimate fluid composition without relying on traditional rheological models. Our method utilizes captured images using dripping onto substrate capillary breakup extensional rheometry, which specializes in observing the spatiotemporal dynamics of capillary-driven extensional flows. Through these images, we introduce “eigenthinning” extracted via principal component analysis, enabling fluid classification and composition estimation. A k-nearest neighbor classification achieves nearly 100% accuracy using a few principal components (PCs). We extend this to multicomponent fluid composition estimation with promising results. Our model suggests potential improvement through deep learning integration and an adaptive weighting strategy. We also explore using PCs to augment training data sets, enhancing data diversity, and facilitating comprehensive analysis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.4c02084</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2482-0842</orcidid><orcidid>https://orcid.org/0000-0001-6821-461X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2024-09, Vol.63 (35), p.15524-15533
issn 0888-5885
1520-5045
1520-5045
language eng
recordid cdi_proquest_miscellaneous_3153764679
source ACS Publications
subjects emulsions
hydrodynamics
Materials and Interfaces
principal component analysis
rheometry
title Pattern Recognition for Capillary-Driven Extensional Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20Recognition%20for%20Capillary-Driven%20Extensional%20Flows&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Im,%20Minhyuk&rft.date=2024-09-04&rft.volume=63&rft.issue=35&rft.spage=15524&rft.epage=15533&rft.pages=15524-15533&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.4c02084&rft_dat=%3Cproquest_cross%3E3153764679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153764679&rft_id=info:pmid/&rfr_iscdi=true