Review of scientific literature and standard guidelines for the characterization of graphene-based materials
Graphene is a two-dimensional carbon material with unique properties, such as high thermal and electrical conductivity, mechanical strength, elasticity, and biocompatibility. The methods used to synthesize graphene affect its structural properties, including flaws, layer count, crystalline domain si...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2024-08, Vol.59 (32), p.14948-14980 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14980 |
---|---|
container_issue | 32 |
container_start_page | 14948 |
container_title | Journal of materials science |
container_volume | 59 |
creator | Alves, Thais Mota, Wanessa S. Barros, Cecília Almeida, Danilo Komatsu, Daniel Zielinska, Aleksandra Cardoso, Juliana C. Severino, Patrícia Souto, Eliana B. Chaud, Marco V. |
description | Graphene is a two-dimensional carbon material with unique properties, such as high thermal and electrical conductivity, mechanical strength, elasticity, and biocompatibility. The methods used to synthesize graphene affect its structural properties, including flaws, layer count, crystalline domain size, and impurities, ultimately affecting the properties and performance of graphene-based materials. This review aims to analyze the methods used to characterize graphene, using both ISO/IEC standards and current literature as references. The discussed techniques are diverse, yet complementary, and include ultraviolet–visible spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray absorption near edge structure, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, the Brunauer–Emmett–Teller method, thermogravimetric analysis, in-line four-point probe, resonant cavity and terahertz time-domain spectroscopy, besides an alternative method to determine the graphene domain. By employing rigorous characterization techniques, researchers and industry professionals can ensure the reliability, effectiveness, and trustworthiness of graphene-based materials for various applications. |
doi_str_mv | 10.1007/s10853-024-10061-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153763703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098003023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-57843f68f5320dfcee3bce2d87922a7d3a0945173bbf37121ddc7a62c706409f3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVoINtN_kBOglx6UTLS2Jb3WJY2CQQCoT0LWRrtKnjtjWS3NL8-2m4g0EMv8xjme4-Bx9ilhGsJoG-yhLZGAaoSZW-kqE7YQtYaRdUCfmILAKWEqhp5xj7n_AwAtVZywfon-hXpNx8Dzy7SMMUQHe_jRMlOcyJuB8_zVKZNnm_m6KmPA2UexsSnLXG3tcm6gsdXO8VxOCRtkt1vaSDR2Uye7-zhbPt8zk5DEbp41yX7-f3bj_WdeHi8vV9_fRBOaT2JWrcVhqYNNSrwwRFh50j5Vq-UstqjhVVVS41dF1BLJb132jbKaWgqWAVcsi_H3H0aX2bKk9nF7Kjv7UDjnA3KGnWDGrCgV_-gz-OchvKdQVi1AAjqQKkj5dKYc6Jg9inubPpjJJhDAeZYgCkFmL8FmKqY8GjKBR42lD6i_-N6A5N3iXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098003023</pqid></control><display><type>article</type><title>Review of scientific literature and standard guidelines for the characterization of graphene-based materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alves, Thais ; Mota, Wanessa S. ; Barros, Cecília ; Almeida, Danilo ; Komatsu, Daniel ; Zielinska, Aleksandra ; Cardoso, Juliana C. ; Severino, Patrícia ; Souto, Eliana B. ; Chaud, Marco V.</creator><creatorcontrib>Alves, Thais ; Mota, Wanessa S. ; Barros, Cecília ; Almeida, Danilo ; Komatsu, Daniel ; Zielinska, Aleksandra ; Cardoso, Juliana C. ; Severino, Patrícia ; Souto, Eliana B. ; Chaud, Marco V.</creatorcontrib><description>Graphene is a two-dimensional carbon material with unique properties, such as high thermal and electrical conductivity, mechanical strength, elasticity, and biocompatibility. The methods used to synthesize graphene affect its structural properties, including flaws, layer count, crystalline domain size, and impurities, ultimately affecting the properties and performance of graphene-based materials. This review aims to analyze the methods used to characterize graphene, using both ISO/IEC standards and current literature as references. The discussed techniques are diverse, yet complementary, and include ultraviolet–visible spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray absorption near edge structure, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, the Brunauer–Emmett–Teller method, thermogravimetric analysis, in-line four-point probe, resonant cavity and terahertz time-domain spectroscopy, besides an alternative method to determine the graphene domain. By employing rigorous characterization techniques, researchers and industry professionals can ensure the reliability, effectiveness, and trustworthiness of graphene-based materials for various applications.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-10061-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>atomic force microscopy ; Atomic structure ; Biocompatibility ; Biomedical materials ; Carbon ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Decision making ; domain ; electrical conductivity ; Electrical properties ; Electrical resistivity ; Electron microscopy ; Electrons ; Fourier transform infrared spectroscopy ; Fourier transforms ; Graphene ; industry ; Infrared analysis ; Infrared spectroscopy ; ISO standards ; Materials Science ; Measurement techniques ; Methods ; Microscopy ; Morphology ; Photoelectrons ; Polymer Sciences ; Quality standards ; Raman spectroscopy ; Review ; Solid Mechanics ; Spectrum analysis ; strength (mechanics) ; Thermogravimetric analysis ; thermogravimetry ; Time domain analysis ; transmission electron microscopy ; ultraviolet-visible spectroscopy ; X ray absorption ; X ray photoelectron spectroscopy ; X-ray absorption spectroscopy ; X-ray diffraction</subject><ispartof>Journal of materials science, 2024-08, Vol.59 (32), p.14948-14980</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-57843f68f5320dfcee3bce2d87922a7d3a0945173bbf37121ddc7a62c706409f3</cites><orcidid>0000-0002-9737-6017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-10061-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-10061-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alves, Thais</creatorcontrib><creatorcontrib>Mota, Wanessa S.</creatorcontrib><creatorcontrib>Barros, Cecília</creatorcontrib><creatorcontrib>Almeida, Danilo</creatorcontrib><creatorcontrib>Komatsu, Daniel</creatorcontrib><creatorcontrib>Zielinska, Aleksandra</creatorcontrib><creatorcontrib>Cardoso, Juliana C.</creatorcontrib><creatorcontrib>Severino, Patrícia</creatorcontrib><creatorcontrib>Souto, Eliana B.</creatorcontrib><creatorcontrib>Chaud, Marco V.</creatorcontrib><title>Review of scientific literature and standard guidelines for the characterization of graphene-based materials</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Graphene is a two-dimensional carbon material with unique properties, such as high thermal and electrical conductivity, mechanical strength, elasticity, and biocompatibility. The methods used to synthesize graphene affect its structural properties, including flaws, layer count, crystalline domain size, and impurities, ultimately affecting the properties and performance of graphene-based materials. This review aims to analyze the methods used to characterize graphene, using both ISO/IEC standards and current literature as references. The discussed techniques are diverse, yet complementary, and include ultraviolet–visible spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray absorption near edge structure, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, the Brunauer–Emmett–Teller method, thermogravimetric analysis, in-line four-point probe, resonant cavity and terahertz time-domain spectroscopy, besides an alternative method to determine the graphene domain. By employing rigorous characterization techniques, researchers and industry professionals can ensure the reliability, effectiveness, and trustworthiness of graphene-based materials for various applications.</description><subject>atomic force microscopy</subject><subject>Atomic structure</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Decision making</subject><subject>domain</subject><subject>electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electron microscopy</subject><subject>Electrons</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>industry</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>ISO standards</subject><subject>Materials Science</subject><subject>Measurement techniques</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Quality standards</subject><subject>Raman spectroscopy</subject><subject>Review</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>strength (mechanics)</subject><subject>Thermogravimetric analysis</subject><subject>thermogravimetry</subject><subject>Time domain analysis</subject><subject>transmission electron microscopy</subject><subject>ultraviolet-visible spectroscopy</subject><subject>X ray absorption</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUFr3DAQhUVoINtN_kBOglx6UTLS2Jb3WJY2CQQCoT0LWRrtKnjtjWS3NL8-2m4g0EMv8xjme4-Bx9ilhGsJoG-yhLZGAaoSZW-kqE7YQtYaRdUCfmILAKWEqhp5xj7n_AwAtVZywfon-hXpNx8Dzy7SMMUQHe_jRMlOcyJuB8_zVKZNnm_m6KmPA2UexsSnLXG3tcm6gsdXO8VxOCRtkt1vaSDR2Uye7-zhbPt8zk5DEbp41yX7-f3bj_WdeHi8vV9_fRBOaT2JWrcVhqYNNSrwwRFh50j5Vq-UstqjhVVVS41dF1BLJb132jbKaWgqWAVcsi_H3H0aX2bKk9nF7Kjv7UDjnA3KGnWDGrCgV_-gz-OchvKdQVi1AAjqQKkj5dKYc6Jg9inubPpjJJhDAeZYgCkFmL8FmKqY8GjKBR42lD6i_-N6A5N3iXA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Alves, Thais</creator><creator>Mota, Wanessa S.</creator><creator>Barros, Cecília</creator><creator>Almeida, Danilo</creator><creator>Komatsu, Daniel</creator><creator>Zielinska, Aleksandra</creator><creator>Cardoso, Juliana C.</creator><creator>Severino, Patrícia</creator><creator>Souto, Eliana B.</creator><creator>Chaud, Marco V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9737-6017</orcidid></search><sort><creationdate>20240801</creationdate><title>Review of scientific literature and standard guidelines for the characterization of graphene-based materials</title><author>Alves, Thais ; Mota, Wanessa S. ; Barros, Cecília ; Almeida, Danilo ; Komatsu, Daniel ; Zielinska, Aleksandra ; Cardoso, Juliana C. ; Severino, Patrícia ; Souto, Eliana B. ; Chaud, Marco V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-57843f68f5320dfcee3bce2d87922a7d3a0945173bbf37121ddc7a62c706409f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>atomic force microscopy</topic><topic>Atomic structure</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Decision making</topic><topic>domain</topic><topic>electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electron microscopy</topic><topic>Electrons</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>industry</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>ISO standards</topic><topic>Materials Science</topic><topic>Measurement techniques</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Quality standards</topic><topic>Raman spectroscopy</topic><topic>Review</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>strength (mechanics)</topic><topic>Thermogravimetric analysis</topic><topic>thermogravimetry</topic><topic>Time domain analysis</topic><topic>transmission electron microscopy</topic><topic>ultraviolet-visible spectroscopy</topic><topic>X ray absorption</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Thais</creatorcontrib><creatorcontrib>Mota, Wanessa S.</creatorcontrib><creatorcontrib>Barros, Cecília</creatorcontrib><creatorcontrib>Almeida, Danilo</creatorcontrib><creatorcontrib>Komatsu, Daniel</creatorcontrib><creatorcontrib>Zielinska, Aleksandra</creatorcontrib><creatorcontrib>Cardoso, Juliana C.</creatorcontrib><creatorcontrib>Severino, Patrícia</creatorcontrib><creatorcontrib>Souto, Eliana B.</creatorcontrib><creatorcontrib>Chaud, Marco V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Thais</au><au>Mota, Wanessa S.</au><au>Barros, Cecília</au><au>Almeida, Danilo</au><au>Komatsu, Daniel</au><au>Zielinska, Aleksandra</au><au>Cardoso, Juliana C.</au><au>Severino, Patrícia</au><au>Souto, Eliana B.</au><au>Chaud, Marco V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of scientific literature and standard guidelines for the characterization of graphene-based materials</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>59</volume><issue>32</issue><spage>14948</spage><epage>14980</epage><pages>14948-14980</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Graphene is a two-dimensional carbon material with unique properties, such as high thermal and electrical conductivity, mechanical strength, elasticity, and biocompatibility. The methods used to synthesize graphene affect its structural properties, including flaws, layer count, crystalline domain size, and impurities, ultimately affecting the properties and performance of graphene-based materials. This review aims to analyze the methods used to characterize graphene, using both ISO/IEC standards and current literature as references. The discussed techniques are diverse, yet complementary, and include ultraviolet–visible spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray absorption near edge structure, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, the Brunauer–Emmett–Teller method, thermogravimetric analysis, in-line four-point probe, resonant cavity and terahertz time-domain spectroscopy, besides an alternative method to determine the graphene domain. By employing rigorous characterization techniques, researchers and industry professionals can ensure the reliability, effectiveness, and trustworthiness of graphene-based materials for various applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-10061-4</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-9737-6017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2024-08, Vol.59 (32), p.14948-14980 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153763703 |
source | SpringerLink Journals - AutoHoldings |
subjects | atomic force microscopy Atomic structure Biocompatibility Biomedical materials Carbon Characterization and Evaluation of Materials Chemical vapor deposition Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Decision making domain electrical conductivity Electrical properties Electrical resistivity Electron microscopy Electrons Fourier transform infrared spectroscopy Fourier transforms Graphene industry Infrared analysis Infrared spectroscopy ISO standards Materials Science Measurement techniques Methods Microscopy Morphology Photoelectrons Polymer Sciences Quality standards Raman spectroscopy Review Solid Mechanics Spectrum analysis strength (mechanics) Thermogravimetric analysis thermogravimetry Time domain analysis transmission electron microscopy ultraviolet-visible spectroscopy X ray absorption X ray photoelectron spectroscopy X-ray absorption spectroscopy X-ray diffraction |
title | Review of scientific literature and standard guidelines for the characterization of graphene-based materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20scientific%20literature%20and%20standard%20guidelines%20for%20the%20characterization%20of%20graphene-based%20materials&rft.jtitle=Journal%20of%20materials%20science&rft.au=Alves,%20Thais&rft.date=2024-08-01&rft.volume=59&rft.issue=32&rft.spage=14948&rft.epage=14980&rft.pages=14948-14980&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-10061-4&rft_dat=%3Cproquest_cross%3E3098003023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098003023&rft_id=info:pmid/&rfr_iscdi=true |