Review of scientific literature and standard guidelines for the characterization of graphene-based materials

Graphene is a two-dimensional carbon material with unique properties, such as high thermal and electrical conductivity, mechanical strength, elasticity, and biocompatibility. The methods used to synthesize graphene affect its structural properties, including flaws, layer count, crystalline domain si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2024-08, Vol.59 (32), p.14948-14980
Hauptverfasser: Alves, Thais, Mota, Wanessa S., Barros, Cecília, Almeida, Danilo, Komatsu, Daniel, Zielinska, Aleksandra, Cardoso, Juliana C., Severino, Patrícia, Souto, Eliana B., Chaud, Marco V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14980
container_issue 32
container_start_page 14948
container_title Journal of materials science
container_volume 59
creator Alves, Thais
Mota, Wanessa S.
Barros, Cecília
Almeida, Danilo
Komatsu, Daniel
Zielinska, Aleksandra
Cardoso, Juliana C.
Severino, Patrícia
Souto, Eliana B.
Chaud, Marco V.
description Graphene is a two-dimensional carbon material with unique properties, such as high thermal and electrical conductivity, mechanical strength, elasticity, and biocompatibility. The methods used to synthesize graphene affect its structural properties, including flaws, layer count, crystalline domain size, and impurities, ultimately affecting the properties and performance of graphene-based materials. This review aims to analyze the methods used to characterize graphene, using both ISO/IEC standards and current literature as references. The discussed techniques are diverse, yet complementary, and include ultraviolet–visible spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray absorption near edge structure, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, the Brunauer–Emmett–Teller method, thermogravimetric analysis, in-line four-point probe, resonant cavity and terahertz time-domain spectroscopy, besides an alternative method to determine the graphene domain. By employing rigorous characterization techniques, researchers and industry professionals can ensure the reliability, effectiveness, and trustworthiness of graphene-based materials for various applications.
doi_str_mv 10.1007/s10853-024-10061-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153763703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098003023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-57843f68f5320dfcee3bce2d87922a7d3a0945173bbf37121ddc7a62c706409f3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVoINtN_kBOglx6UTLS2Jb3WJY2CQQCoT0LWRrtKnjtjWS3NL8-2m4g0EMv8xjme4-Bx9ilhGsJoG-yhLZGAaoSZW-kqE7YQtYaRdUCfmILAKWEqhp5xj7n_AwAtVZywfon-hXpNx8Dzy7SMMUQHe_jRMlOcyJuB8_zVKZNnm_m6KmPA2UexsSnLXG3tcm6gsdXO8VxOCRtkt1vaSDR2Uye7-zhbPt8zk5DEbp41yX7-f3bj_WdeHi8vV9_fRBOaT2JWrcVhqYNNSrwwRFh50j5Vq-UstqjhVVVS41dF1BLJb132jbKaWgqWAVcsi_H3H0aX2bKk9nF7Kjv7UDjnA3KGnWDGrCgV_-gz-OchvKdQVi1AAjqQKkj5dKYc6Jg9inubPpjJJhDAeZYgCkFmL8FmKqY8GjKBR42lD6i_-N6A5N3iXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098003023</pqid></control><display><type>article</type><title>Review of scientific literature and standard guidelines for the characterization of graphene-based materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alves, Thais ; Mota, Wanessa S. ; Barros, Cecília ; Almeida, Danilo ; Komatsu, Daniel ; Zielinska, Aleksandra ; Cardoso, Juliana C. ; Severino, Patrícia ; Souto, Eliana B. ; Chaud, Marco V.</creator><creatorcontrib>Alves, Thais ; Mota, Wanessa S. ; Barros, Cecília ; Almeida, Danilo ; Komatsu, Daniel ; Zielinska, Aleksandra ; Cardoso, Juliana C. ; Severino, Patrícia ; Souto, Eliana B. ; Chaud, Marco V.</creatorcontrib><description>Graphene is a two-dimensional carbon material with unique properties, such as high thermal and electrical conductivity, mechanical strength, elasticity, and biocompatibility. The methods used to synthesize graphene affect its structural properties, including flaws, layer count, crystalline domain size, and impurities, ultimately affecting the properties and performance of graphene-based materials. This review aims to analyze the methods used to characterize graphene, using both ISO/IEC standards and current literature as references. The discussed techniques are diverse, yet complementary, and include ultraviolet–visible spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray absorption near edge structure, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, the Brunauer–Emmett–Teller method, thermogravimetric analysis, in-line four-point probe, resonant cavity and terahertz time-domain spectroscopy, besides an alternative method to determine the graphene domain. By employing rigorous characterization techniques, researchers and industry professionals can ensure the reliability, effectiveness, and trustworthiness of graphene-based materials for various applications.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-10061-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>atomic force microscopy ; Atomic structure ; Biocompatibility ; Biomedical materials ; Carbon ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Decision making ; domain ; electrical conductivity ; Electrical properties ; Electrical resistivity ; Electron microscopy ; Electrons ; Fourier transform infrared spectroscopy ; Fourier transforms ; Graphene ; industry ; Infrared analysis ; Infrared spectroscopy ; ISO standards ; Materials Science ; Measurement techniques ; Methods ; Microscopy ; Morphology ; Photoelectrons ; Polymer Sciences ; Quality standards ; Raman spectroscopy ; Review ; Solid Mechanics ; Spectrum analysis ; strength (mechanics) ; Thermogravimetric analysis ; thermogravimetry ; Time domain analysis ; transmission electron microscopy ; ultraviolet-visible spectroscopy ; X ray absorption ; X ray photoelectron spectroscopy ; X-ray absorption spectroscopy ; X-ray diffraction</subject><ispartof>Journal of materials science, 2024-08, Vol.59 (32), p.14948-14980</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-57843f68f5320dfcee3bce2d87922a7d3a0945173bbf37121ddc7a62c706409f3</cites><orcidid>0000-0002-9737-6017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-10061-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-10061-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alves, Thais</creatorcontrib><creatorcontrib>Mota, Wanessa S.</creatorcontrib><creatorcontrib>Barros, Cecília</creatorcontrib><creatorcontrib>Almeida, Danilo</creatorcontrib><creatorcontrib>Komatsu, Daniel</creatorcontrib><creatorcontrib>Zielinska, Aleksandra</creatorcontrib><creatorcontrib>Cardoso, Juliana C.</creatorcontrib><creatorcontrib>Severino, Patrícia</creatorcontrib><creatorcontrib>Souto, Eliana B.</creatorcontrib><creatorcontrib>Chaud, Marco V.</creatorcontrib><title>Review of scientific literature and standard guidelines for the characterization of graphene-based materials</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Graphene is a two-dimensional carbon material with unique properties, such as high thermal and electrical conductivity, mechanical strength, elasticity, and biocompatibility. The methods used to synthesize graphene affect its structural properties, including flaws, layer count, crystalline domain size, and impurities, ultimately affecting the properties and performance of graphene-based materials. This review aims to analyze the methods used to characterize graphene, using both ISO/IEC standards and current literature as references. The discussed techniques are diverse, yet complementary, and include ultraviolet–visible spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray absorption near edge structure, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, the Brunauer–Emmett–Teller method, thermogravimetric analysis, in-line four-point probe, resonant cavity and terahertz time-domain spectroscopy, besides an alternative method to determine the graphene domain. By employing rigorous characterization techniques, researchers and industry professionals can ensure the reliability, effectiveness, and trustworthiness of graphene-based materials for various applications.</description><subject>atomic force microscopy</subject><subject>Atomic structure</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Decision making</subject><subject>domain</subject><subject>electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electron microscopy</subject><subject>Electrons</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>industry</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>ISO standards</subject><subject>Materials Science</subject><subject>Measurement techniques</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Quality standards</subject><subject>Raman spectroscopy</subject><subject>Review</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>strength (mechanics)</subject><subject>Thermogravimetric analysis</subject><subject>thermogravimetry</subject><subject>Time domain analysis</subject><subject>transmission electron microscopy</subject><subject>ultraviolet-visible spectroscopy</subject><subject>X ray absorption</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUFr3DAQhUVoINtN_kBOglx6UTLS2Jb3WJY2CQQCoT0LWRrtKnjtjWS3NL8-2m4g0EMv8xjme4-Bx9ilhGsJoG-yhLZGAaoSZW-kqE7YQtYaRdUCfmILAKWEqhp5xj7n_AwAtVZywfon-hXpNx8Dzy7SMMUQHe_jRMlOcyJuB8_zVKZNnm_m6KmPA2UexsSnLXG3tcm6gsdXO8VxOCRtkt1vaSDR2Uye7-zhbPt8zk5DEbp41yX7-f3bj_WdeHi8vV9_fRBOaT2JWrcVhqYNNSrwwRFh50j5Vq-UstqjhVVVS41dF1BLJb132jbKaWgqWAVcsi_H3H0aX2bKk9nF7Kjv7UDjnA3KGnWDGrCgV_-gz-OchvKdQVi1AAjqQKkj5dKYc6Jg9inubPpjJJhDAeZYgCkFmL8FmKqY8GjKBR42lD6i_-N6A5N3iXA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Alves, Thais</creator><creator>Mota, Wanessa S.</creator><creator>Barros, Cecília</creator><creator>Almeida, Danilo</creator><creator>Komatsu, Daniel</creator><creator>Zielinska, Aleksandra</creator><creator>Cardoso, Juliana C.</creator><creator>Severino, Patrícia</creator><creator>Souto, Eliana B.</creator><creator>Chaud, Marco V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9737-6017</orcidid></search><sort><creationdate>20240801</creationdate><title>Review of scientific literature and standard guidelines for the characterization of graphene-based materials</title><author>Alves, Thais ; Mota, Wanessa S. ; Barros, Cecília ; Almeida, Danilo ; Komatsu, Daniel ; Zielinska, Aleksandra ; Cardoso, Juliana C. ; Severino, Patrícia ; Souto, Eliana B. ; Chaud, Marco V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-57843f68f5320dfcee3bce2d87922a7d3a0945173bbf37121ddc7a62c706409f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>atomic force microscopy</topic><topic>Atomic structure</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Decision making</topic><topic>domain</topic><topic>electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electron microscopy</topic><topic>Electrons</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>industry</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>ISO standards</topic><topic>Materials Science</topic><topic>Measurement techniques</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Quality standards</topic><topic>Raman spectroscopy</topic><topic>Review</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>strength (mechanics)</topic><topic>Thermogravimetric analysis</topic><topic>thermogravimetry</topic><topic>Time domain analysis</topic><topic>transmission electron microscopy</topic><topic>ultraviolet-visible spectroscopy</topic><topic>X ray absorption</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Thais</creatorcontrib><creatorcontrib>Mota, Wanessa S.</creatorcontrib><creatorcontrib>Barros, Cecília</creatorcontrib><creatorcontrib>Almeida, Danilo</creatorcontrib><creatorcontrib>Komatsu, Daniel</creatorcontrib><creatorcontrib>Zielinska, Aleksandra</creatorcontrib><creatorcontrib>Cardoso, Juliana C.</creatorcontrib><creatorcontrib>Severino, Patrícia</creatorcontrib><creatorcontrib>Souto, Eliana B.</creatorcontrib><creatorcontrib>Chaud, Marco V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Thais</au><au>Mota, Wanessa S.</au><au>Barros, Cecília</au><au>Almeida, Danilo</au><au>Komatsu, Daniel</au><au>Zielinska, Aleksandra</au><au>Cardoso, Juliana C.</au><au>Severino, Patrícia</au><au>Souto, Eliana B.</au><au>Chaud, Marco V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of scientific literature and standard guidelines for the characterization of graphene-based materials</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>59</volume><issue>32</issue><spage>14948</spage><epage>14980</epage><pages>14948-14980</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Graphene is a two-dimensional carbon material with unique properties, such as high thermal and electrical conductivity, mechanical strength, elasticity, and biocompatibility. The methods used to synthesize graphene affect its structural properties, including flaws, layer count, crystalline domain size, and impurities, ultimately affecting the properties and performance of graphene-based materials. This review aims to analyze the methods used to characterize graphene, using both ISO/IEC standards and current literature as references. The discussed techniques are diverse, yet complementary, and include ultraviolet–visible spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray absorption near edge structure, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, the Brunauer–Emmett–Teller method, thermogravimetric analysis, in-line four-point probe, resonant cavity and terahertz time-domain spectroscopy, besides an alternative method to determine the graphene domain. By employing rigorous characterization techniques, researchers and industry professionals can ensure the reliability, effectiveness, and trustworthiness of graphene-based materials for various applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-10061-4</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-9737-6017</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2024-08, Vol.59 (32), p.14948-14980
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_3153763703
source SpringerLink Journals - AutoHoldings
subjects atomic force microscopy
Atomic structure
Biocompatibility
Biomedical materials
Carbon
Characterization and Evaluation of Materials
Chemical vapor deposition
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Decision making
domain
electrical conductivity
Electrical properties
Electrical resistivity
Electron microscopy
Electrons
Fourier transform infrared spectroscopy
Fourier transforms
Graphene
industry
Infrared analysis
Infrared spectroscopy
ISO standards
Materials Science
Measurement techniques
Methods
Microscopy
Morphology
Photoelectrons
Polymer Sciences
Quality standards
Raman spectroscopy
Review
Solid Mechanics
Spectrum analysis
strength (mechanics)
Thermogravimetric analysis
thermogravimetry
Time domain analysis
transmission electron microscopy
ultraviolet-visible spectroscopy
X ray absorption
X ray photoelectron spectroscopy
X-ray absorption spectroscopy
X-ray diffraction
title Review of scientific literature and standard guidelines for the characterization of graphene-based materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20scientific%20literature%20and%20standard%20guidelines%20for%20the%20characterization%20of%20graphene-based%20materials&rft.jtitle=Journal%20of%20materials%20science&rft.au=Alves,%20Thais&rft.date=2024-08-01&rft.volume=59&rft.issue=32&rft.spage=14948&rft.epage=14980&rft.pages=14948-14980&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-10061-4&rft_dat=%3Cproquest_cross%3E3098003023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098003023&rft_id=info:pmid/&rfr_iscdi=true