An extremes-weighted empirical quantile mapping for global climate model data bias correction for improved emphasis on extremes

Accuracy in the global climate model (GCM) projections is essential for developing reliable impact mitigation strategies. The conventional bias correction methods used to improve this accuracy often fail to capture the extremes, specifically for precipitation, due to the generic correction applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied climatology 2024-06, Vol.155 (6), p.5515-5523
Hauptverfasser: Rohith, A. N., Cibin, Raj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5523
container_issue 6
container_start_page 5515
container_title Theoretical and applied climatology
container_volume 155
creator Rohith, A. N.
Cibin, Raj
description Accuracy in the global climate model (GCM) projections is essential for developing reliable impact mitigation strategies. The conventional bias correction methods used to improve this accuracy often fail to capture the extremes, specifically for precipitation, due to the generic correction application to whole data. Given the importance of understanding future extreme precipitation behavior for disaster mitigation, we propose Extremes-Weighted Empirical Quantile Mapping (EW-EQM) bias correction with a specific emphasis on extremes. The EW-EQM applies separate EQM correction to threshold-exceeded extremes and frequency-adjusted non-extreme precipitation occurrences. The bias correction results demonstrated using station-observed precipitation records at 945 locations in the Mid-Atlantic region of the United States, and five Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs demonstrate the strength of EW-EQM to improve the bias correction abilities of extreme precipitation occurrences. The spatial median of Root Mean Square error between observed and bias-corrected extreme precipitation was mostly less than 6 mm for EW-EQM across GCMs, while EQM and Power Transformation had a median higher than 12 mm. Further, future bias-corrected precipitation series for 2021–2050 under SSP245 indicate a 0–10% increase in total annual precipitation and a 10% decrease to 25% increase in mean annual maximum precipitation in the region. The improved bias correction of extremes could be significant in climate change impact mitigation decisions such as flood management. Highlights An Extremes-Weighted Empirical Quantile Mapping (EW-EQM) climate data bias correction is proposed. The EW-EQM gives specific emphasis on the threshold exceedance extreme precipitation events. The EW-EQM outperforms conventional EQM for extreme precipitation events. An increase of up to 25% in mean extreme precipitation is for the Mid-Atlantic region of the US under SSP245 in the near future. EW-EQM preserves the raw GCM trends for extremes, while EQM does not.
doi_str_mv 10.1007/s00704-024-04965-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153743527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081483883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ed0db3527eb4abfedbf59db13b74bd10ae2cb369bc82646b3e8b5025d708132c3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOI7-AVcBN26qSZM2naWILxhwo-Au5HE7k6FtatLxMRv_upmpILhwkQfc75x7uQehU0ouKCHiMqaL8Izk6fBZWWSbPTShnPGM84rtowmhQmRiVr0coqMYV4SQvCzFBH1ddRg-hgAtxOwd3GI5gMXQ9i44oxr8ulbd4BrArep71y1w7QNeNF6nmmlcq4ZU8hYabNWgsHYqYuNDADM43-1o1_bBv42uSxVdxP635zE6qFUT4eTnnaLn25un6_ts_nj3cH01zwwr8iEDS6xOPwGaK12D1XUxs5oyLbi2lCjIjWblTJsqL3mpGVS6IHlhBakoyw2bovPRN83yuoY4yNZFA02jOvDrKBktmODbDgk9-4Ou_Dp0aTrJklvaZ1WxROUjZYKPMUAt-5DWET4lJXKbiRwzkSkTuctEbpKIjaKY4G4B4df6H9U33nWSuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081483883</pqid></control><display><type>article</type><title>An extremes-weighted empirical quantile mapping for global climate model data bias correction for improved emphasis on extremes</title><source>Springer Online Journals - JUSTICE</source><creator>Rohith, A. N. ; Cibin, Raj</creator><creatorcontrib>Rohith, A. N. ; Cibin, Raj</creatorcontrib><description>Accuracy in the global climate model (GCM) projections is essential for developing reliable impact mitigation strategies. The conventional bias correction methods used to improve this accuracy often fail to capture the extremes, specifically for precipitation, due to the generic correction application to whole data. Given the importance of understanding future extreme precipitation behavior for disaster mitigation, we propose Extremes-Weighted Empirical Quantile Mapping (EW-EQM) bias correction with a specific emphasis on extremes. The EW-EQM applies separate EQM correction to threshold-exceeded extremes and frequency-adjusted non-extreme precipitation occurrences. The bias correction results demonstrated using station-observed precipitation records at 945 locations in the Mid-Atlantic region of the United States, and five Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs demonstrate the strength of EW-EQM to improve the bias correction abilities of extreme precipitation occurrences. The spatial median of Root Mean Square error between observed and bias-corrected extreme precipitation was mostly less than 6 mm for EW-EQM across GCMs, while EQM and Power Transformation had a median higher than 12 mm. Further, future bias-corrected precipitation series for 2021–2050 under SSP245 indicate a 0–10% increase in total annual precipitation and a 10% decrease to 25% increase in mean annual maximum precipitation in the region. The improved bias correction of extremes could be significant in climate change impact mitigation decisions such as flood management. Highlights An Extremes-Weighted Empirical Quantile Mapping (EW-EQM) climate data bias correction is proposed. The EW-EQM gives specific emphasis on the threshold exceedance extreme precipitation events. The EW-EQM outperforms conventional EQM for extreme precipitation events. An increase of up to 25% in mean extreme precipitation is for the Mid-Atlantic region of the US under SSP245 in the near future. EW-EQM preserves the raw GCM trends for extremes, while EQM does not.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-024-04965-z</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Accuracy ; Annual precipitation ; Aquatic Pollution ; atmospheric precipitation ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Bias ; Climate change ; Climate change mitigation ; Climate models ; Climatic data ; Climatology ; Disaster management ; Earth and Environmental Science ; Earth Sciences ; Emergency preparedness ; Environmental impact ; Error correction ; Extreme values ; Extreme weather ; Flood control ; Flood management ; Global climate ; Global climate models ; Intercomparison ; Mapping ; Maximum precipitation ; Mid-Atlantic region ; Mitigation ; Precipitation ; Quantiles ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Theoretical and applied climatology, 2024-06, Vol.155 (6), p.5515-5523</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ed0db3527eb4abfedbf59db13b74bd10ae2cb369bc82646b3e8b5025d708132c3</citedby><cites>FETCH-LOGICAL-c352t-ed0db3527eb4abfedbf59db13b74bd10ae2cb369bc82646b3e8b5025d708132c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-024-04965-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-024-04965-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rohith, A. N.</creatorcontrib><creatorcontrib>Cibin, Raj</creatorcontrib><title>An extremes-weighted empirical quantile mapping for global climate model data bias correction for improved emphasis on extremes</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>Accuracy in the global climate model (GCM) projections is essential for developing reliable impact mitigation strategies. The conventional bias correction methods used to improve this accuracy often fail to capture the extremes, specifically for precipitation, due to the generic correction application to whole data. Given the importance of understanding future extreme precipitation behavior for disaster mitigation, we propose Extremes-Weighted Empirical Quantile Mapping (EW-EQM) bias correction with a specific emphasis on extremes. The EW-EQM applies separate EQM correction to threshold-exceeded extremes and frequency-adjusted non-extreme precipitation occurrences. The bias correction results demonstrated using station-observed precipitation records at 945 locations in the Mid-Atlantic region of the United States, and five Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs demonstrate the strength of EW-EQM to improve the bias correction abilities of extreme precipitation occurrences. The spatial median of Root Mean Square error between observed and bias-corrected extreme precipitation was mostly less than 6 mm for EW-EQM across GCMs, while EQM and Power Transformation had a median higher than 12 mm. Further, future bias-corrected precipitation series for 2021–2050 under SSP245 indicate a 0–10% increase in total annual precipitation and a 10% decrease to 25% increase in mean annual maximum precipitation in the region. The improved bias correction of extremes could be significant in climate change impact mitigation decisions such as flood management. Highlights An Extremes-Weighted Empirical Quantile Mapping (EW-EQM) climate data bias correction is proposed. The EW-EQM gives specific emphasis on the threshold exceedance extreme precipitation events. The EW-EQM outperforms conventional EQM for extreme precipitation events. An increase of up to 25% in mean extreme precipitation is for the Mid-Atlantic region of the US under SSP245 in the near future. EW-EQM preserves the raw GCM trends for extremes, while EQM does not.</description><subject>Accuracy</subject><subject>Annual precipitation</subject><subject>Aquatic Pollution</subject><subject>atmospheric precipitation</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Bias</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Climate models</subject><subject>Climatic data</subject><subject>Climatology</subject><subject>Disaster management</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Emergency preparedness</subject><subject>Environmental impact</subject><subject>Error correction</subject><subject>Extreme values</subject><subject>Extreme weather</subject><subject>Flood control</subject><subject>Flood management</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Intercomparison</subject><subject>Mapping</subject><subject>Maximum precipitation</subject><subject>Mid-Atlantic region</subject><subject>Mitigation</subject><subject>Precipitation</subject><subject>Quantiles</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLxDAUhYMoOI7-AVcBN26qSZM2naWILxhwo-Au5HE7k6FtatLxMRv_upmpILhwkQfc75x7uQehU0ouKCHiMqaL8Izk6fBZWWSbPTShnPGM84rtowmhQmRiVr0coqMYV4SQvCzFBH1ddRg-hgAtxOwd3GI5gMXQ9i44oxr8ulbd4BrArep71y1w7QNeNF6nmmlcq4ZU8hYabNWgsHYqYuNDADM43-1o1_bBv42uSxVdxP635zE6qFUT4eTnnaLn25un6_ts_nj3cH01zwwr8iEDS6xOPwGaK12D1XUxs5oyLbi2lCjIjWblTJsqL3mpGVS6IHlhBakoyw2bovPRN83yuoY4yNZFA02jOvDrKBktmODbDgk9-4Ou_Dp0aTrJklvaZ1WxROUjZYKPMUAt-5DWET4lJXKbiRwzkSkTuctEbpKIjaKY4G4B4df6H9U33nWSuw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Rohith, A. N.</creator><creator>Cibin, Raj</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240601</creationdate><title>An extremes-weighted empirical quantile mapping for global climate model data bias correction for improved emphasis on extremes</title><author>Rohith, A. N. ; Cibin, Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ed0db3527eb4abfedbf59db13b74bd10ae2cb369bc82646b3e8b5025d708132c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Annual precipitation</topic><topic>Aquatic Pollution</topic><topic>atmospheric precipitation</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Bias</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Climate models</topic><topic>Climatic data</topic><topic>Climatology</topic><topic>Disaster management</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Emergency preparedness</topic><topic>Environmental impact</topic><topic>Error correction</topic><topic>Extreme values</topic><topic>Extreme weather</topic><topic>Flood control</topic><topic>Flood management</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Intercomparison</topic><topic>Mapping</topic><topic>Maximum precipitation</topic><topic>Mid-Atlantic region</topic><topic>Mitigation</topic><topic>Precipitation</topic><topic>Quantiles</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohith, A. N.</creatorcontrib><creatorcontrib>Cibin, Raj</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohith, A. N.</au><au>Cibin, Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extremes-weighted empirical quantile mapping for global climate model data bias correction for improved emphasis on extremes</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>155</volume><issue>6</issue><spage>5515</spage><epage>5523</epage><pages>5515-5523</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>Accuracy in the global climate model (GCM) projections is essential for developing reliable impact mitigation strategies. The conventional bias correction methods used to improve this accuracy often fail to capture the extremes, specifically for precipitation, due to the generic correction application to whole data. Given the importance of understanding future extreme precipitation behavior for disaster mitigation, we propose Extremes-Weighted Empirical Quantile Mapping (EW-EQM) bias correction with a specific emphasis on extremes. The EW-EQM applies separate EQM correction to threshold-exceeded extremes and frequency-adjusted non-extreme precipitation occurrences. The bias correction results demonstrated using station-observed precipitation records at 945 locations in the Mid-Atlantic region of the United States, and five Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs demonstrate the strength of EW-EQM to improve the bias correction abilities of extreme precipitation occurrences. The spatial median of Root Mean Square error between observed and bias-corrected extreme precipitation was mostly less than 6 mm for EW-EQM across GCMs, while EQM and Power Transformation had a median higher than 12 mm. Further, future bias-corrected precipitation series for 2021–2050 under SSP245 indicate a 0–10% increase in total annual precipitation and a 10% decrease to 25% increase in mean annual maximum precipitation in the region. The improved bias correction of extremes could be significant in climate change impact mitigation decisions such as flood management. Highlights An Extremes-Weighted Empirical Quantile Mapping (EW-EQM) climate data bias correction is proposed. The EW-EQM gives specific emphasis on the threshold exceedance extreme precipitation events. The EW-EQM outperforms conventional EQM for extreme precipitation events. An increase of up to 25% in mean extreme precipitation is for the Mid-Atlantic region of the US under SSP245 in the near future. EW-EQM preserves the raw GCM trends for extremes, while EQM does not.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-024-04965-z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0177-798X
ispartof Theoretical and applied climatology, 2024-06, Vol.155 (6), p.5515-5523
issn 0177-798X
1434-4483
language eng
recordid cdi_proquest_miscellaneous_3153743527
source Springer Online Journals - JUSTICE
subjects Accuracy
Annual precipitation
Aquatic Pollution
atmospheric precipitation
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Bias
Climate change
Climate change mitigation
Climate models
Climatic data
Climatology
Disaster management
Earth and Environmental Science
Earth Sciences
Emergency preparedness
Environmental impact
Error correction
Extreme values
Extreme weather
Flood control
Flood management
Global climate
Global climate models
Intercomparison
Mapping
Maximum precipitation
Mid-Atlantic region
Mitigation
Precipitation
Quantiles
Waste Water Technology
Water Management
Water Pollution Control
title An extremes-weighted empirical quantile mapping for global climate model data bias correction for improved emphasis on extremes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extremes-weighted%20empirical%20quantile%20mapping%20for%20global%20climate%20model%20data%20bias%20correction%20for%20improved%20emphasis%20on%20extremes&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Rohith,%20A.%20N.&rft.date=2024-06-01&rft.volume=155&rft.issue=6&rft.spage=5515&rft.epage=5523&rft.pages=5515-5523&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-024-04965-z&rft_dat=%3Cproquest_cross%3E3081483883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081483883&rft_id=info:pmid/&rfr_iscdi=true