Solution-Processed Thick Hole-Transport Layer for Reliable Quantum-Dot Light-Emitting Diodes Based on an Alternatingly Doped Structure
The operating lifetime of quantum-dot light-emitting diodes (QLED) is a bottleneck for commercial display applications. To enhance the operational stability of QLEDs, we developed a robust solution-processed highly conductive hole-transport-layer (HTL) structure, which enables a thick HTL structure...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-08, Vol.16 (34), p.45139-45146 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45146 |
---|---|
container_issue | 34 |
container_start_page | 45139 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Kim, Dong Hyun Hwang, Jeong Ha Seo, Eunyong Lee, Kyungjae Lim, Jaehoon Lee, Donggu |
description | The operating lifetime of quantum-dot light-emitting diodes (QLED) is a bottleneck for commercial display applications. To enhance the operational stability of QLEDs, we developed a robust solution-processed highly conductive hole-transport-layer (HTL) structure, which enables a thick HTL structure to mitigate the electric field. An alternating doping strategy, which involves multiple alternating stacks of N4,N4′-di(naphthalen-1-yl)-N4,N4′-bis(4-vinylphenyl)biphenyl-4,4′-diamine and phosphomolybdic acid layers, could provide significantly improved conductivity; more specifically, the 90 nm-thick alternatingly doped HTL exhibited higher conductivity than the 45 nm-thick undoped HTL. Therefore, when applied to a QLED, the increase in the thickness of the alternatingly doped HTL increased device reliability. As a result, the lifetime of the QLED with a thick, alternatingly doped HTL was 48-fold higher than that of the QLED with a thin undoped HTL. This alternating doping strategy provides a new paradigm for increasing the stability of solution-based optoelectronic devices in addition to QLEDs. |
doi_str_mv | 10.1021/acsami.4c07049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153739949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153739949</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-dc2327b027d4a91ca0e15b6330fe78fcba616c3b090856dfe94ceb58d2cae8f43</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EoqWwZYm8REgZ_EpiL0unUKSReHRYRzfOTevixIMfi_kD_G4ymqE7xOpa-s490vVHyGvOVpwJ_h5sgsmtlGUtU-YJOedGqUqLWjx9fCt1Rl6k9MBYIwWrn5MzaZhutVLn5Pdt8CW7MFdfY7CYEg50e-_sT3oTPFbbCHPahZjpBvYY6Rgi_Y7eQe-Rfisw5zJV67DE7u4-V9eTy9nNd3TtwoCJfoCDL8wUZnrpM8YZDrHf03XYLcltjsXmEvEleTaCT_jqNC_Ij4_X26ubavPl0-ery00FQulcDVZI0fZMtIMCwy0w5HXfSMlGbPVoe2h4Y2XPlvvqZhjRKIt9rQdhAfWo5AV5e_TuYvhVMOVucsmi9zBjKKmTvJatNEaZ_6NMN6bWgh2sqyNqY0gp4tjtopsg7jvOukNN3bGm7lTTsvDm5C79hMMj_reXBXh3BJbF7iGU5eN8-pftD6Ihnu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086958204</pqid></control><display><type>article</type><title>Solution-Processed Thick Hole-Transport Layer for Reliable Quantum-Dot Light-Emitting Diodes Based on an Alternatingly Doped Structure</title><source>ACS Publications</source><creator>Kim, Dong Hyun ; Hwang, Jeong Ha ; Seo, Eunyong ; Lee, Kyungjae ; Lim, Jaehoon ; Lee, Donggu</creator><creatorcontrib>Kim, Dong Hyun ; Hwang, Jeong Ha ; Seo, Eunyong ; Lee, Kyungjae ; Lim, Jaehoon ; Lee, Donggu</creatorcontrib><description>The operating lifetime of quantum-dot light-emitting diodes (QLED) is a bottleneck for commercial display applications. To enhance the operational stability of QLEDs, we developed a robust solution-processed highly conductive hole-transport-layer (HTL) structure, which enables a thick HTL structure to mitigate the electric field. An alternating doping strategy, which involves multiple alternating stacks of N4,N4′-di(naphthalen-1-yl)-N4,N4′-bis(4-vinylphenyl)biphenyl-4,4′-diamine and phosphomolybdic acid layers, could provide significantly improved conductivity; more specifically, the 90 nm-thick alternatingly doped HTL exhibited higher conductivity than the 45 nm-thick undoped HTL. Therefore, when applied to a QLED, the increase in the thickness of the alternatingly doped HTL increased device reliability. As a result, the lifetime of the QLED with a thick, alternatingly doped HTL was 48-fold higher than that of the QLED with a thin undoped HTL. This alternating doping strategy provides a new paradigm for increasing the stability of solution-based optoelectronic devices in addition to QLEDs.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c07049</identifier><identifier>PMID: 39087844</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acids ; electric field ; Functional Inorganic Materials and Devices ; light emitting diodes ; materials</subject><ispartof>ACS applied materials & interfaces, 2024-08, Vol.16 (34), p.45139-45146</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-dc2327b027d4a91ca0e15b6330fe78fcba616c3b090856dfe94ceb58d2cae8f43</cites><orcidid>0009-0005-6950-4332 ; 0009-0002-7959-0607 ; 0000-0003-2623-3550 ; 0000-0002-6099-7493 ; 0009-0004-9762-4318 ; 0009-0006-1352-6484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c07049$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c07049$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39087844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dong Hyun</creatorcontrib><creatorcontrib>Hwang, Jeong Ha</creatorcontrib><creatorcontrib>Seo, Eunyong</creatorcontrib><creatorcontrib>Lee, Kyungjae</creatorcontrib><creatorcontrib>Lim, Jaehoon</creatorcontrib><creatorcontrib>Lee, Donggu</creatorcontrib><title>Solution-Processed Thick Hole-Transport Layer for Reliable Quantum-Dot Light-Emitting Diodes Based on an Alternatingly Doped Structure</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The operating lifetime of quantum-dot light-emitting diodes (QLED) is a bottleneck for commercial display applications. To enhance the operational stability of QLEDs, we developed a robust solution-processed highly conductive hole-transport-layer (HTL) structure, which enables a thick HTL structure to mitigate the electric field. An alternating doping strategy, which involves multiple alternating stacks of N4,N4′-di(naphthalen-1-yl)-N4,N4′-bis(4-vinylphenyl)biphenyl-4,4′-diamine and phosphomolybdic acid layers, could provide significantly improved conductivity; more specifically, the 90 nm-thick alternatingly doped HTL exhibited higher conductivity than the 45 nm-thick undoped HTL. Therefore, when applied to a QLED, the increase in the thickness of the alternatingly doped HTL increased device reliability. As a result, the lifetime of the QLED with a thick, alternatingly doped HTL was 48-fold higher than that of the QLED with a thin undoped HTL. This alternating doping strategy provides a new paradigm for increasing the stability of solution-based optoelectronic devices in addition to QLEDs.</description><subject>acids</subject><subject>electric field</subject><subject>Functional Inorganic Materials and Devices</subject><subject>light emitting diodes</subject><subject>materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAURi0EoqWwZYm8REgZ_EpiL0unUKSReHRYRzfOTevixIMfi_kD_G4ymqE7xOpa-s490vVHyGvOVpwJ_h5sgsmtlGUtU-YJOedGqUqLWjx9fCt1Rl6k9MBYIwWrn5MzaZhutVLn5Pdt8CW7MFdfY7CYEg50e-_sT3oTPFbbCHPahZjpBvYY6Rgi_Y7eQe-Rfisw5zJV67DE7u4-V9eTy9nNd3TtwoCJfoCDL8wUZnrpM8YZDrHf03XYLcltjsXmEvEleTaCT_jqNC_Ij4_X26ubavPl0-ery00FQulcDVZI0fZMtIMCwy0w5HXfSMlGbPVoe2h4Y2XPlvvqZhjRKIt9rQdhAfWo5AV5e_TuYvhVMOVucsmi9zBjKKmTvJatNEaZ_6NMN6bWgh2sqyNqY0gp4tjtopsg7jvOukNN3bGm7lTTsvDm5C79hMMj_reXBXh3BJbF7iGU5eN8-pftD6Ihnu8</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Kim, Dong Hyun</creator><creator>Hwang, Jeong Ha</creator><creator>Seo, Eunyong</creator><creator>Lee, Kyungjae</creator><creator>Lim, Jaehoon</creator><creator>Lee, Donggu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0005-6950-4332</orcidid><orcidid>https://orcid.org/0009-0002-7959-0607</orcidid><orcidid>https://orcid.org/0000-0003-2623-3550</orcidid><orcidid>https://orcid.org/0000-0002-6099-7493</orcidid><orcidid>https://orcid.org/0009-0004-9762-4318</orcidid><orcidid>https://orcid.org/0009-0006-1352-6484</orcidid></search><sort><creationdate>20240828</creationdate><title>Solution-Processed Thick Hole-Transport Layer for Reliable Quantum-Dot Light-Emitting Diodes Based on an Alternatingly Doped Structure</title><author>Kim, Dong Hyun ; Hwang, Jeong Ha ; Seo, Eunyong ; Lee, Kyungjae ; Lim, Jaehoon ; Lee, Donggu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-dc2327b027d4a91ca0e15b6330fe78fcba616c3b090856dfe94ceb58d2cae8f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acids</topic><topic>electric field</topic><topic>Functional Inorganic Materials and Devices</topic><topic>light emitting diodes</topic><topic>materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dong Hyun</creatorcontrib><creatorcontrib>Hwang, Jeong Ha</creatorcontrib><creatorcontrib>Seo, Eunyong</creatorcontrib><creatorcontrib>Lee, Kyungjae</creatorcontrib><creatorcontrib>Lim, Jaehoon</creatorcontrib><creatorcontrib>Lee, Donggu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dong Hyun</au><au>Hwang, Jeong Ha</au><au>Seo, Eunyong</au><au>Lee, Kyungjae</au><au>Lim, Jaehoon</au><au>Lee, Donggu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution-Processed Thick Hole-Transport Layer for Reliable Quantum-Dot Light-Emitting Diodes Based on an Alternatingly Doped Structure</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-08-28</date><risdate>2024</risdate><volume>16</volume><issue>34</issue><spage>45139</spage><epage>45146</epage><pages>45139-45146</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The operating lifetime of quantum-dot light-emitting diodes (QLED) is a bottleneck for commercial display applications. To enhance the operational stability of QLEDs, we developed a robust solution-processed highly conductive hole-transport-layer (HTL) structure, which enables a thick HTL structure to mitigate the electric field. An alternating doping strategy, which involves multiple alternating stacks of N4,N4′-di(naphthalen-1-yl)-N4,N4′-bis(4-vinylphenyl)biphenyl-4,4′-diamine and phosphomolybdic acid layers, could provide significantly improved conductivity; more specifically, the 90 nm-thick alternatingly doped HTL exhibited higher conductivity than the 45 nm-thick undoped HTL. Therefore, when applied to a QLED, the increase in the thickness of the alternatingly doped HTL increased device reliability. As a result, the lifetime of the QLED with a thick, alternatingly doped HTL was 48-fold higher than that of the QLED with a thin undoped HTL. This alternating doping strategy provides a new paradigm for increasing the stability of solution-based optoelectronic devices in addition to QLEDs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39087844</pmid><doi>10.1021/acsami.4c07049</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0005-6950-4332</orcidid><orcidid>https://orcid.org/0009-0002-7959-0607</orcidid><orcidid>https://orcid.org/0000-0003-2623-3550</orcidid><orcidid>https://orcid.org/0000-0002-6099-7493</orcidid><orcidid>https://orcid.org/0009-0004-9762-4318</orcidid><orcidid>https://orcid.org/0009-0006-1352-6484</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-08, Vol.16 (34), p.45139-45146 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153739949 |
source | ACS Publications |
subjects | acids electric field Functional Inorganic Materials and Devices light emitting diodes materials |
title | Solution-Processed Thick Hole-Transport Layer for Reliable Quantum-Dot Light-Emitting Diodes Based on an Alternatingly Doped Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution-Processed%20Thick%20Hole-Transport%20Layer%20for%20Reliable%20Quantum-Dot%20Light-Emitting%20Diodes%20Based%20on%20an%20Alternatingly%20Doped%20Structure&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kim,%20Dong%20Hyun&rft.date=2024-08-28&rft.volume=16&rft.issue=34&rft.spage=45139&rft.epage=45146&rft.pages=45139-45146&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c07049&rft_dat=%3Cproquest_cross%3E3153739949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086958204&rft_id=info:pmid/39087844&rfr_iscdi=true |