In Situ Generated Bimetallic Nanoparticle Catalysts for the Transfer Semihydrogenation of Azoarenes

Hydrazoarenes are important structural components extensively utilized across diverse industries, such as dyes and pharmaceuticals; they are also vital in supramolecular chemistry for the synthesis of highly substituted aniline derivatives. Although the semihydrogenation of azoarenes is a common met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2024-07, Vol.12 (30), p.11274-11282
Hauptverfasser: Park, Byoung Yong, Kim, Yeon Jae, Han, Min Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11282
container_issue 30
container_start_page 11274
container_title ACS sustainable chemistry & engineering
container_volume 12
creator Park, Byoung Yong
Kim, Yeon Jae
Han, Min Su
description Hydrazoarenes are important structural components extensively utilized across diverse industries, such as dyes and pharmaceuticals; they are also vital in supramolecular chemistry for the synthesis of highly substituted aniline derivatives. Although the semihydrogenation of azoarenes is a common method for hydrazoarene synthesis, developing an efficient and selective semihydrogenation method remains challenging. Bimetallic nanoparticle catalysts present a promising avenue for enhancing these hydrogenation reactions through the synergistic effects of two metals, potentially enhancing the catalytic activity or selectivity. However, determining the optimal metal combination for maximizing the synergistic effects in azoarene semihydrogenation poses a significant challenge. In this study, we present an innovative approach for in situ generation of bimetallic nanoparticle catalysts for the transfer semihydrogenation of azoarenes. This method involves the straightforward generation of bimetallic nanoparticles by adding ammonia borane (NH3BH3) to an ethanol solution containing two metal salts. Among the various bimetallic catalysts investigated, NiZn (a combination of Ni and Zn salts) exhibited the highest activity and selectivity for the semihydrogenation reaction, enabling the selective reduction of various azoarenes to their corresponding hydrazoarenes under mild reaction conditions. The proposed method offers an efficient catalytic system for the transfer semihydrogenation of azoarenes.
doi_str_mv 10.1021/acssuschemeng.4c02854
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153736795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153736795</sourcerecordid><originalsourceid>FETCH-LOGICAL-a276t-6c3e6c93d16958595c4091eb7c39ef859ce7593771d82091719993b2602e9f2c3</originalsourceid><addsrcrecordid>eNqFUDtPwzAQjhBIVKU_AckjS4ofcRyPpYJSqYKhZY5c59K6SuxiO0P59Ri1A0zccqfvJd2XZfcETwmm5FHpEIag99CD3U0LjWnFi6tsRElZ5bio-PWv-zabhHDAaaRktCKjTC8tWps4oAVY8CpCg55MD1F1ndHoTVl3VD4a3QGaq4SeQgyodR7FPaCNVza04NEaerM_Nd7twKponEWuRbMvp3xKDXfZTau6AJPLHmcfL8-b-Wu-el8s57NVrqgoY15qBqWWrCGl5BWXXBdYEtgKzSS0CdAguGRCkKaiiRFEpi-2tMQUZEs1G2cP59yjd58DhFj3JmjoOmXBDaFmhDPBSiF5kvKzVHsXgoe2PnrTK3-qCa5_eq3_9Fpfek0-cvYluj64wdv00D-eb_9NgQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153736795</pqid></control><display><type>article</type><title>In Situ Generated Bimetallic Nanoparticle Catalysts for the Transfer Semihydrogenation of Azoarenes</title><source>American Chemical Society Journals</source><creator>Park, Byoung Yong ; Kim, Yeon Jae ; Han, Min Su</creator><creatorcontrib>Park, Byoung Yong ; Kim, Yeon Jae ; Han, Min Su</creatorcontrib><description>Hydrazoarenes are important structural components extensively utilized across diverse industries, such as dyes and pharmaceuticals; they are also vital in supramolecular chemistry for the synthesis of highly substituted aniline derivatives. Although the semihydrogenation of azoarenes is a common method for hydrazoarene synthesis, developing an efficient and selective semihydrogenation method remains challenging. Bimetallic nanoparticle catalysts present a promising avenue for enhancing these hydrogenation reactions through the synergistic effects of two metals, potentially enhancing the catalytic activity or selectivity. However, determining the optimal metal combination for maximizing the synergistic effects in azoarene semihydrogenation poses a significant challenge. In this study, we present an innovative approach for in situ generation of bimetallic nanoparticle catalysts for the transfer semihydrogenation of azoarenes. This method involves the straightforward generation of bimetallic nanoparticles by adding ammonia borane (NH3BH3) to an ethanol solution containing two metal salts. Among the various bimetallic catalysts investigated, NiZn (a combination of Ni and Zn salts) exhibited the highest activity and selectivity for the semihydrogenation reaction, enabling the selective reduction of various azoarenes to their corresponding hydrazoarenes under mild reaction conditions. The proposed method offers an efficient catalytic system for the transfer semihydrogenation of azoarenes.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.4c02854</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>ammonia ; aniline ; catalytic activity ; drugs ; ethanol ; green chemistry ; hydrogenation ; nanoparticles</subject><ispartof>ACS sustainable chemistry &amp; engineering, 2024-07, Vol.12 (30), p.11274-11282</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a276t-6c3e6c93d16958595c4091eb7c39ef859ce7593771d82091719993b2602e9f2c3</cites><orcidid>0000-0001-9588-6980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.4c02854$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.4c02854$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Park, Byoung Yong</creatorcontrib><creatorcontrib>Kim, Yeon Jae</creatorcontrib><creatorcontrib>Han, Min Su</creatorcontrib><title>In Situ Generated Bimetallic Nanoparticle Catalysts for the Transfer Semihydrogenation of Azoarenes</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Hydrazoarenes are important structural components extensively utilized across diverse industries, such as dyes and pharmaceuticals; they are also vital in supramolecular chemistry for the synthesis of highly substituted aniline derivatives. Although the semihydrogenation of azoarenes is a common method for hydrazoarene synthesis, developing an efficient and selective semihydrogenation method remains challenging. Bimetallic nanoparticle catalysts present a promising avenue for enhancing these hydrogenation reactions through the synergistic effects of two metals, potentially enhancing the catalytic activity or selectivity. However, determining the optimal metal combination for maximizing the synergistic effects in azoarene semihydrogenation poses a significant challenge. In this study, we present an innovative approach for in situ generation of bimetallic nanoparticle catalysts for the transfer semihydrogenation of azoarenes. This method involves the straightforward generation of bimetallic nanoparticles by adding ammonia borane (NH3BH3) to an ethanol solution containing two metal salts. Among the various bimetallic catalysts investigated, NiZn (a combination of Ni and Zn salts) exhibited the highest activity and selectivity for the semihydrogenation reaction, enabling the selective reduction of various azoarenes to their corresponding hydrazoarenes under mild reaction conditions. The proposed method offers an efficient catalytic system for the transfer semihydrogenation of azoarenes.</description><subject>ammonia</subject><subject>aniline</subject><subject>catalytic activity</subject><subject>drugs</subject><subject>ethanol</subject><subject>green chemistry</subject><subject>hydrogenation</subject><subject>nanoparticles</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUDtPwzAQjhBIVKU_AckjS4ofcRyPpYJSqYKhZY5c59K6SuxiO0P59Ri1A0zccqfvJd2XZfcETwmm5FHpEIag99CD3U0LjWnFi6tsRElZ5bio-PWv-zabhHDAaaRktCKjTC8tWps4oAVY8CpCg55MD1F1ndHoTVl3VD4a3QGaq4SeQgyodR7FPaCNVza04NEaerM_Nd7twKponEWuRbMvp3xKDXfZTau6AJPLHmcfL8-b-Wu-el8s57NVrqgoY15qBqWWrCGl5BWXXBdYEtgKzSS0CdAguGRCkKaiiRFEpi-2tMQUZEs1G2cP59yjd58DhFj3JmjoOmXBDaFmhDPBSiF5kvKzVHsXgoe2PnrTK3-qCa5_eq3_9Fpfek0-cvYluj64wdv00D-eb_9NgQQ</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Park, Byoung Yong</creator><creator>Kim, Yeon Jae</creator><creator>Han, Min Su</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9588-6980</orcidid></search><sort><creationdate>20240729</creationdate><title>In Situ Generated Bimetallic Nanoparticle Catalysts for the Transfer Semihydrogenation of Azoarenes</title><author>Park, Byoung Yong ; Kim, Yeon Jae ; Han, Min Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a276t-6c3e6c93d16958595c4091eb7c39ef859ce7593771d82091719993b2602e9f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ammonia</topic><topic>aniline</topic><topic>catalytic activity</topic><topic>drugs</topic><topic>ethanol</topic><topic>green chemistry</topic><topic>hydrogenation</topic><topic>nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Byoung Yong</creatorcontrib><creatorcontrib>Kim, Yeon Jae</creatorcontrib><creatorcontrib>Han, Min Su</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Byoung Yong</au><au>Kim, Yeon Jae</au><au>Han, Min Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Generated Bimetallic Nanoparticle Catalysts for the Transfer Semihydrogenation of Azoarenes</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2024-07-29</date><risdate>2024</risdate><volume>12</volume><issue>30</issue><spage>11274</spage><epage>11282</epage><pages>11274-11282</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Hydrazoarenes are important structural components extensively utilized across diverse industries, such as dyes and pharmaceuticals; they are also vital in supramolecular chemistry for the synthesis of highly substituted aniline derivatives. Although the semihydrogenation of azoarenes is a common method for hydrazoarene synthesis, developing an efficient and selective semihydrogenation method remains challenging. Bimetallic nanoparticle catalysts present a promising avenue for enhancing these hydrogenation reactions through the synergistic effects of two metals, potentially enhancing the catalytic activity or selectivity. However, determining the optimal metal combination for maximizing the synergistic effects in azoarene semihydrogenation poses a significant challenge. In this study, we present an innovative approach for in situ generation of bimetallic nanoparticle catalysts for the transfer semihydrogenation of azoarenes. This method involves the straightforward generation of bimetallic nanoparticles by adding ammonia borane (NH3BH3) to an ethanol solution containing two metal salts. Among the various bimetallic catalysts investigated, NiZn (a combination of Ni and Zn salts) exhibited the highest activity and selectivity for the semihydrogenation reaction, enabling the selective reduction of various azoarenes to their corresponding hydrazoarenes under mild reaction conditions. The proposed method offers an efficient catalytic system for the transfer semihydrogenation of azoarenes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.4c02854</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9588-6980</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2024-07, Vol.12 (30), p.11274-11282
issn 2168-0485
2168-0485
language eng
recordid cdi_proquest_miscellaneous_3153736795
source American Chemical Society Journals
subjects ammonia
aniline
catalytic activity
drugs
ethanol
green chemistry
hydrogenation
nanoparticles
title In Situ Generated Bimetallic Nanoparticle Catalysts for the Transfer Semihydrogenation of Azoarenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Generated%20Bimetallic%20Nanoparticle%20Catalysts%20for%20the%20Transfer%20Semihydrogenation%20of%20Azoarenes&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Park,%20Byoung%20Yong&rft.date=2024-07-29&rft.volume=12&rft.issue=30&rft.spage=11274&rft.epage=11282&rft.pages=11274-11282&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.4c02854&rft_dat=%3Cproquest_cross%3E3153736795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153736795&rft_id=info:pmid/&rfr_iscdi=true