A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation

Assessing the role of carbon capture in energy systems dominated by non-dispatchable renewable energy sources requires a reliable and accurate model. However, carbon capture models used in complex systems optimisation are often very simplified. Therefore, we developed a mixed-integer linear model of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2023-04, Vol.336, p.120738, Article 120738
Hauptverfasser: Weimann, Lukas, Dubbink, Guus, van der Ham, Louis, Gazzani, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120738
container_title Applied energy
container_volume 336
creator Weimann, Lukas
Dubbink, Guus
van der Ham, Louis
Gazzani, Matteo
description Assessing the role of carbon capture in energy systems dominated by non-dispatchable renewable energy sources requires a reliable and accurate model. However, carbon capture models used in complex systems optimisation are often very simplified. Therefore, we developed a mixed-integer linear model of post-combustion carbon capture starting from rigorous thermodynamic modelling in Aspen Plus. The final model decides the size and the operation of the capture process and returns the cost and energy requirements as a function of the CO2 concentration and the flow rate of the treated flue gas. Validation against actual plant data (Petra Nova) showed excellent accuracy with a deviation in total CO2 captured of just 2%. By applying the model to an exemplary case study, we show that it allows for co-optimising renewables deployment and carbon capture design and operation for a gas turbine, thus opening opportunities to explore new system designs of practical added value. [Display omitted] •Mixed-integer linear model of post-combustion carbon capture.•Based on Aspen Plus simulations (equilibrium and rate-based).•Considers effects of CO2 concentration in the flue gas and part-load behaviour.•Dynamic constraints guarantee realistic behaviour in time-resolved analyses.•Validation against real plant data shows excellent accuracy (only 2% deviation).
doi_str_mv 10.1016/j.apenergy.2023.120738
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153735238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261923001022</els_id><sourcerecordid>3153735238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d5fe865530d68f38c1701d150720c183661b43a6f0730d145dabcaa2cbf9901a3</originalsourceid><addsrcrecordid>eNqFkLtOxDAQRS0EEsvjF5BLmiwee-MkEgUI8ZKQaKC2HHsCXiVxsB3Elvw5WQINDdVt7hnNPYScAFsCA3m2XuoBewwvmyVnXCyBs0KUO2QBZcGzCqDcJQsmmMy4hGqfHMS4Zozxqbcgn5c0vWLovN30unMmq3VESzv3gTZzfcIXDLR1PepApxK21Dd08DFlxnf1GJPzPTU61N8xpDEgbXygAVun6xbpGJG6ns4P0riJCTvqh-Q6F_WWPiJ7jW4jHv_kIXm-uX66usseHm_vry4fMiMqkTKbN1jKPBfMyrIRpYGCgYWcFZwZKIWUUK-Els00nllY5VbXRmtu6qaqGGhxSE7nu0PwbyPGpKYPDLat7tGPUQnIRSFyLsqpKueqCT7GgI0agut02ChgautcrdWvc7V1rmbnE3j-BzQufa9MQbv2f_xixnHy8O4wqGgc9gatC2iSst79d-ILn8GlEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153735238</pqid></control><display><type>article</type><title>A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation</title><source>Elsevier ScienceDirect Journals</source><creator>Weimann, Lukas ; Dubbink, Guus ; van der Ham, Louis ; Gazzani, Matteo</creator><creatorcontrib>Weimann, Lukas ; Dubbink, Guus ; van der Ham, Louis ; Gazzani, Matteo</creatorcontrib><description>Assessing the role of carbon capture in energy systems dominated by non-dispatchable renewable energy sources requires a reliable and accurate model. However, carbon capture models used in complex systems optimisation are often very simplified. Therefore, we developed a mixed-integer linear model of post-combustion carbon capture starting from rigorous thermodynamic modelling in Aspen Plus. The final model decides the size and the operation of the capture process and returns the cost and energy requirements as a function of the CO2 concentration and the flow rate of the treated flue gas. Validation against actual plant data (Petra Nova) showed excellent accuracy with a deviation in total CO2 captured of just 2%. By applying the model to an exemplary case study, we show that it allows for co-optimising renewables deployment and carbon capture design and operation for a gas turbine, thus opening opportunities to explore new system designs of practical added value. [Display omitted] •Mixed-integer linear model of post-combustion carbon capture.•Based on Aspen Plus simulations (equilibrium and rate-based).•Considers effects of CO2 concentration in the flue gas and part-load behaviour.•Dynamic constraints guarantee realistic behaviour in time-resolved analyses.•Validation against real plant data shows excellent accuracy (only 2% deviation).</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2023.120738</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>carbon ; Carbon capture ; carbon dioxide ; case studies ; energy ; Energy system ; flue gas ; linear models ; MEA ; MILP ; Optimisation ; system optimization ; thermodynamics</subject><ispartof>Applied energy, 2023-04, Vol.336, p.120738, Article 120738</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d5fe865530d68f38c1701d150720c183661b43a6f0730d145dabcaa2cbf9901a3</citedby><cites>FETCH-LOGICAL-c393t-d5fe865530d68f38c1701d150720c183661b43a6f0730d145dabcaa2cbf9901a3</cites><orcidid>0000-0002-1352-4562 ; 0000-0002-3764-1085 ; 0000-0002-3293-5199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306261923001022$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Weimann, Lukas</creatorcontrib><creatorcontrib>Dubbink, Guus</creatorcontrib><creatorcontrib>van der Ham, Louis</creatorcontrib><creatorcontrib>Gazzani, Matteo</creatorcontrib><title>A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation</title><title>Applied energy</title><description>Assessing the role of carbon capture in energy systems dominated by non-dispatchable renewable energy sources requires a reliable and accurate model. However, carbon capture models used in complex systems optimisation are often very simplified. Therefore, we developed a mixed-integer linear model of post-combustion carbon capture starting from rigorous thermodynamic modelling in Aspen Plus. The final model decides the size and the operation of the capture process and returns the cost and energy requirements as a function of the CO2 concentration and the flow rate of the treated flue gas. Validation against actual plant data (Petra Nova) showed excellent accuracy with a deviation in total CO2 captured of just 2%. By applying the model to an exemplary case study, we show that it allows for co-optimising renewables deployment and carbon capture design and operation for a gas turbine, thus opening opportunities to explore new system designs of practical added value. [Display omitted] •Mixed-integer linear model of post-combustion carbon capture.•Based on Aspen Plus simulations (equilibrium and rate-based).•Considers effects of CO2 concentration in the flue gas and part-load behaviour.•Dynamic constraints guarantee realistic behaviour in time-resolved analyses.•Validation against real plant data shows excellent accuracy (only 2% deviation).</description><subject>carbon</subject><subject>Carbon capture</subject><subject>carbon dioxide</subject><subject>case studies</subject><subject>energy</subject><subject>Energy system</subject><subject>flue gas</subject><subject>linear models</subject><subject>MEA</subject><subject>MILP</subject><subject>Optimisation</subject><subject>system optimization</subject><subject>thermodynamics</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOxDAQRS0EEsvjF5BLmiwee-MkEgUI8ZKQaKC2HHsCXiVxsB3Elvw5WQINDdVt7hnNPYScAFsCA3m2XuoBewwvmyVnXCyBs0KUO2QBZcGzCqDcJQsmmMy4hGqfHMS4Zozxqbcgn5c0vWLovN30unMmq3VESzv3gTZzfcIXDLR1PepApxK21Dd08DFlxnf1GJPzPTU61N8xpDEgbXygAVun6xbpGJG6ns4P0riJCTvqh-Q6F_WWPiJ7jW4jHv_kIXm-uX66usseHm_vry4fMiMqkTKbN1jKPBfMyrIRpYGCgYWcFZwZKIWUUK-Els00nllY5VbXRmtu6qaqGGhxSE7nu0PwbyPGpKYPDLat7tGPUQnIRSFyLsqpKueqCT7GgI0agut02ChgautcrdWvc7V1rmbnE3j-BzQufa9MQbv2f_xixnHy8O4wqGgc9gatC2iSst79d-ILn8GlEg</recordid><startdate>20230415</startdate><enddate>20230415</enddate><creator>Weimann, Lukas</creator><creator>Dubbink, Guus</creator><creator>van der Ham, Louis</creator><creator>Gazzani, Matteo</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1352-4562</orcidid><orcidid>https://orcid.org/0000-0002-3764-1085</orcidid><orcidid>https://orcid.org/0000-0002-3293-5199</orcidid></search><sort><creationdate>20230415</creationdate><title>A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation</title><author>Weimann, Lukas ; Dubbink, Guus ; van der Ham, Louis ; Gazzani, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d5fe865530d68f38c1701d150720c183661b43a6f0730d145dabcaa2cbf9901a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon</topic><topic>Carbon capture</topic><topic>carbon dioxide</topic><topic>case studies</topic><topic>energy</topic><topic>Energy system</topic><topic>flue gas</topic><topic>linear models</topic><topic>MEA</topic><topic>MILP</topic><topic>Optimisation</topic><topic>system optimization</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weimann, Lukas</creatorcontrib><creatorcontrib>Dubbink, Guus</creatorcontrib><creatorcontrib>van der Ham, Louis</creatorcontrib><creatorcontrib>Gazzani, Matteo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weimann, Lukas</au><au>Dubbink, Guus</au><au>van der Ham, Louis</au><au>Gazzani, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation</atitle><jtitle>Applied energy</jtitle><date>2023-04-15</date><risdate>2023</risdate><volume>336</volume><spage>120738</spage><pages>120738-</pages><artnum>120738</artnum><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>Assessing the role of carbon capture in energy systems dominated by non-dispatchable renewable energy sources requires a reliable and accurate model. However, carbon capture models used in complex systems optimisation are often very simplified. Therefore, we developed a mixed-integer linear model of post-combustion carbon capture starting from rigorous thermodynamic modelling in Aspen Plus. The final model decides the size and the operation of the capture process and returns the cost and energy requirements as a function of the CO2 concentration and the flow rate of the treated flue gas. Validation against actual plant data (Petra Nova) showed excellent accuracy with a deviation in total CO2 captured of just 2%. By applying the model to an exemplary case study, we show that it allows for co-optimising renewables deployment and carbon capture design and operation for a gas turbine, thus opening opportunities to explore new system designs of practical added value. [Display omitted] •Mixed-integer linear model of post-combustion carbon capture.•Based on Aspen Plus simulations (equilibrium and rate-based).•Considers effects of CO2 concentration in the flue gas and part-load behaviour.•Dynamic constraints guarantee realistic behaviour in time-resolved analyses.•Validation against real plant data shows excellent accuracy (only 2% deviation).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2023.120738</doi><orcidid>https://orcid.org/0000-0002-1352-4562</orcidid><orcidid>https://orcid.org/0000-0002-3764-1085</orcidid><orcidid>https://orcid.org/0000-0002-3293-5199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2023-04, Vol.336, p.120738, Article 120738
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_3153735238
source Elsevier ScienceDirect Journals
subjects carbon
Carbon capture
carbon dioxide
case studies
energy
Energy system
flue gas
linear models
MEA
MILP
Optimisation
system optimization
thermodynamics
title A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermodynamic-based%20mixed-integer%20linear%20model%20of%20post-combustion%20carbon%20capture%20for%20reliable%20use%20in%20energy%20system%20optimisation&rft.jtitle=Applied%20energy&rft.au=Weimann,%20Lukas&rft.date=2023-04-15&rft.volume=336&rft.spage=120738&rft.pages=120738-&rft.artnum=120738&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2023.120738&rft_dat=%3Cproquest_cross%3E3153735238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153735238&rft_id=info:pmid/&rft_els_id=S0306261923001022&rfr_iscdi=true