A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation
Assessing the role of carbon capture in energy systems dominated by non-dispatchable renewable energy sources requires a reliable and accurate model. However, carbon capture models used in complex systems optimisation are often very simplified. Therefore, we developed a mixed-integer linear model of...
Gespeichert in:
Veröffentlicht in: | Applied energy 2023-04, Vol.336, p.120738, Article 120738 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 120738 |
container_title | Applied energy |
container_volume | 336 |
creator | Weimann, Lukas Dubbink, Guus van der Ham, Louis Gazzani, Matteo |
description | Assessing the role of carbon capture in energy systems dominated by non-dispatchable renewable energy sources requires a reliable and accurate model. However, carbon capture models used in complex systems optimisation are often very simplified. Therefore, we developed a mixed-integer linear model of post-combustion carbon capture starting from rigorous thermodynamic modelling in Aspen Plus. The final model decides the size and the operation of the capture process and returns the cost and energy requirements as a function of the CO2 concentration and the flow rate of the treated flue gas. Validation against actual plant data (Petra Nova) showed excellent accuracy with a deviation in total CO2 captured of just 2%. By applying the model to an exemplary case study, we show that it allows for co-optimising renewables deployment and carbon capture design and operation for a gas turbine, thus opening opportunities to explore new system designs of practical added value.
[Display omitted]
•Mixed-integer linear model of post-combustion carbon capture.•Based on Aspen Plus simulations (equilibrium and rate-based).•Considers effects of CO2 concentration in the flue gas and part-load behaviour.•Dynamic constraints guarantee realistic behaviour in time-resolved analyses.•Validation against real plant data shows excellent accuracy (only 2% deviation). |
doi_str_mv | 10.1016/j.apenergy.2023.120738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153735238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261923001022</els_id><sourcerecordid>3153735238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d5fe865530d68f38c1701d150720c183661b43a6f0730d145dabcaa2cbf9901a3</originalsourceid><addsrcrecordid>eNqFkLtOxDAQRS0EEsvjF5BLmiwee-MkEgUI8ZKQaKC2HHsCXiVxsB3Elvw5WQINDdVt7hnNPYScAFsCA3m2XuoBewwvmyVnXCyBs0KUO2QBZcGzCqDcJQsmmMy4hGqfHMS4Zozxqbcgn5c0vWLovN30unMmq3VESzv3gTZzfcIXDLR1PepApxK21Dd08DFlxnf1GJPzPTU61N8xpDEgbXygAVun6xbpGJG6ns4P0riJCTvqh-Q6F_WWPiJ7jW4jHv_kIXm-uX66usseHm_vry4fMiMqkTKbN1jKPBfMyrIRpYGCgYWcFZwZKIWUUK-Els00nllY5VbXRmtu6qaqGGhxSE7nu0PwbyPGpKYPDLat7tGPUQnIRSFyLsqpKueqCT7GgI0agut02ChgautcrdWvc7V1rmbnE3j-BzQufa9MQbv2f_xixnHy8O4wqGgc9gatC2iSst79d-ILn8GlEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153735238</pqid></control><display><type>article</type><title>A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation</title><source>Elsevier ScienceDirect Journals</source><creator>Weimann, Lukas ; Dubbink, Guus ; van der Ham, Louis ; Gazzani, Matteo</creator><creatorcontrib>Weimann, Lukas ; Dubbink, Guus ; van der Ham, Louis ; Gazzani, Matteo</creatorcontrib><description>Assessing the role of carbon capture in energy systems dominated by non-dispatchable renewable energy sources requires a reliable and accurate model. However, carbon capture models used in complex systems optimisation are often very simplified. Therefore, we developed a mixed-integer linear model of post-combustion carbon capture starting from rigorous thermodynamic modelling in Aspen Plus. The final model decides the size and the operation of the capture process and returns the cost and energy requirements as a function of the CO2 concentration and the flow rate of the treated flue gas. Validation against actual plant data (Petra Nova) showed excellent accuracy with a deviation in total CO2 captured of just 2%. By applying the model to an exemplary case study, we show that it allows for co-optimising renewables deployment and carbon capture design and operation for a gas turbine, thus opening opportunities to explore new system designs of practical added value.
[Display omitted]
•Mixed-integer linear model of post-combustion carbon capture.•Based on Aspen Plus simulations (equilibrium and rate-based).•Considers effects of CO2 concentration in the flue gas and part-load behaviour.•Dynamic constraints guarantee realistic behaviour in time-resolved analyses.•Validation against real plant data shows excellent accuracy (only 2% deviation).</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2023.120738</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>carbon ; Carbon capture ; carbon dioxide ; case studies ; energy ; Energy system ; flue gas ; linear models ; MEA ; MILP ; Optimisation ; system optimization ; thermodynamics</subject><ispartof>Applied energy, 2023-04, Vol.336, p.120738, Article 120738</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d5fe865530d68f38c1701d150720c183661b43a6f0730d145dabcaa2cbf9901a3</citedby><cites>FETCH-LOGICAL-c393t-d5fe865530d68f38c1701d150720c183661b43a6f0730d145dabcaa2cbf9901a3</cites><orcidid>0000-0002-1352-4562 ; 0000-0002-3764-1085 ; 0000-0002-3293-5199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306261923001022$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Weimann, Lukas</creatorcontrib><creatorcontrib>Dubbink, Guus</creatorcontrib><creatorcontrib>van der Ham, Louis</creatorcontrib><creatorcontrib>Gazzani, Matteo</creatorcontrib><title>A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation</title><title>Applied energy</title><description>Assessing the role of carbon capture in energy systems dominated by non-dispatchable renewable energy sources requires a reliable and accurate model. However, carbon capture models used in complex systems optimisation are often very simplified. Therefore, we developed a mixed-integer linear model of post-combustion carbon capture starting from rigorous thermodynamic modelling in Aspen Plus. The final model decides the size and the operation of the capture process and returns the cost and energy requirements as a function of the CO2 concentration and the flow rate of the treated flue gas. Validation against actual plant data (Petra Nova) showed excellent accuracy with a deviation in total CO2 captured of just 2%. By applying the model to an exemplary case study, we show that it allows for co-optimising renewables deployment and carbon capture design and operation for a gas turbine, thus opening opportunities to explore new system designs of practical added value.
[Display omitted]
•Mixed-integer linear model of post-combustion carbon capture.•Based on Aspen Plus simulations (equilibrium and rate-based).•Considers effects of CO2 concentration in the flue gas and part-load behaviour.•Dynamic constraints guarantee realistic behaviour in time-resolved analyses.•Validation against real plant data shows excellent accuracy (only 2% deviation).</description><subject>carbon</subject><subject>Carbon capture</subject><subject>carbon dioxide</subject><subject>case studies</subject><subject>energy</subject><subject>Energy system</subject><subject>flue gas</subject><subject>linear models</subject><subject>MEA</subject><subject>MILP</subject><subject>Optimisation</subject><subject>system optimization</subject><subject>thermodynamics</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOxDAQRS0EEsvjF5BLmiwee-MkEgUI8ZKQaKC2HHsCXiVxsB3Elvw5WQINDdVt7hnNPYScAFsCA3m2XuoBewwvmyVnXCyBs0KUO2QBZcGzCqDcJQsmmMy4hGqfHMS4Zozxqbcgn5c0vWLovN30unMmq3VESzv3gTZzfcIXDLR1PepApxK21Dd08DFlxnf1GJPzPTU61N8xpDEgbXygAVun6xbpGJG6ns4P0riJCTvqh-Q6F_WWPiJ7jW4jHv_kIXm-uX66usseHm_vry4fMiMqkTKbN1jKPBfMyrIRpYGCgYWcFZwZKIWUUK-Els00nllY5VbXRmtu6qaqGGhxSE7nu0PwbyPGpKYPDLat7tGPUQnIRSFyLsqpKueqCT7GgI0agut02ChgautcrdWvc7V1rmbnE3j-BzQufa9MQbv2f_xixnHy8O4wqGgc9gatC2iSst79d-ILn8GlEg</recordid><startdate>20230415</startdate><enddate>20230415</enddate><creator>Weimann, Lukas</creator><creator>Dubbink, Guus</creator><creator>van der Ham, Louis</creator><creator>Gazzani, Matteo</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1352-4562</orcidid><orcidid>https://orcid.org/0000-0002-3764-1085</orcidid><orcidid>https://orcid.org/0000-0002-3293-5199</orcidid></search><sort><creationdate>20230415</creationdate><title>A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation</title><author>Weimann, Lukas ; Dubbink, Guus ; van der Ham, Louis ; Gazzani, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d5fe865530d68f38c1701d150720c183661b43a6f0730d145dabcaa2cbf9901a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon</topic><topic>Carbon capture</topic><topic>carbon dioxide</topic><topic>case studies</topic><topic>energy</topic><topic>Energy system</topic><topic>flue gas</topic><topic>linear models</topic><topic>MEA</topic><topic>MILP</topic><topic>Optimisation</topic><topic>system optimization</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weimann, Lukas</creatorcontrib><creatorcontrib>Dubbink, Guus</creatorcontrib><creatorcontrib>van der Ham, Louis</creatorcontrib><creatorcontrib>Gazzani, Matteo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weimann, Lukas</au><au>Dubbink, Guus</au><au>van der Ham, Louis</au><au>Gazzani, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation</atitle><jtitle>Applied energy</jtitle><date>2023-04-15</date><risdate>2023</risdate><volume>336</volume><spage>120738</spage><pages>120738-</pages><artnum>120738</artnum><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>Assessing the role of carbon capture in energy systems dominated by non-dispatchable renewable energy sources requires a reliable and accurate model. However, carbon capture models used in complex systems optimisation are often very simplified. Therefore, we developed a mixed-integer linear model of post-combustion carbon capture starting from rigorous thermodynamic modelling in Aspen Plus. The final model decides the size and the operation of the capture process and returns the cost and energy requirements as a function of the CO2 concentration and the flow rate of the treated flue gas. Validation against actual plant data (Petra Nova) showed excellent accuracy with a deviation in total CO2 captured of just 2%. By applying the model to an exemplary case study, we show that it allows for co-optimising renewables deployment and carbon capture design and operation for a gas turbine, thus opening opportunities to explore new system designs of practical added value.
[Display omitted]
•Mixed-integer linear model of post-combustion carbon capture.•Based on Aspen Plus simulations (equilibrium and rate-based).•Considers effects of CO2 concentration in the flue gas and part-load behaviour.•Dynamic constraints guarantee realistic behaviour in time-resolved analyses.•Validation against real plant data shows excellent accuracy (only 2% deviation).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2023.120738</doi><orcidid>https://orcid.org/0000-0002-1352-4562</orcidid><orcidid>https://orcid.org/0000-0002-3764-1085</orcidid><orcidid>https://orcid.org/0000-0002-3293-5199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-2619 |
ispartof | Applied energy, 2023-04, Vol.336, p.120738, Article 120738 |
issn | 0306-2619 1872-9118 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153735238 |
source | Elsevier ScienceDirect Journals |
subjects | carbon Carbon capture carbon dioxide case studies energy Energy system flue gas linear models MEA MILP Optimisation system optimization thermodynamics |
title | A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermodynamic-based%20mixed-integer%20linear%20model%20of%20post-combustion%20carbon%20capture%20for%20reliable%20use%20in%20energy%20system%20optimisation&rft.jtitle=Applied%20energy&rft.au=Weimann,%20Lukas&rft.date=2023-04-15&rft.volume=336&rft.spage=120738&rft.pages=120738-&rft.artnum=120738&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2023.120738&rft_dat=%3Cproquest_cross%3E3153735238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153735238&rft_id=info:pmid/&rft_els_id=S0306261923001022&rfr_iscdi=true |