Interdecadal tropical Pacific–Atlantic interaction simulated in CMIP6 models
The interaction between the tropical Pacific and Atlantic at the decadal timescale has received widespread attention. This study evaluates the simulation of the interdecadal interaction of the tropical Pacific and Atlantic in 39 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Most of C...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2024-06, Vol.62 (6), p.5143-5155 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5155 |
---|---|
container_issue | 6 |
container_start_page | 5143 |
container_title | Climate dynamics |
container_volume | 62 |
creator | Deng, Yue Huang, Ping Zhou, Shijie Yang, Xianke Zhang, Jiayu |
description | The interaction between the tropical Pacific and Atlantic at the decadal timescale has received widespread attention. This study evaluates the simulation of the interdecadal interaction of the tropical Pacific and Atlantic in 39 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Most of CMIP6 models have a positive correlation with the observations. The high-skill models reproduce well the temporal evolution of the lead–lag correlation. However, the low-skill models cannot reproduce the observed relationship between tropical Pacific decadal variability (TPDV) and tropical Atlantic multidecadal variability (TAMV) relationship, always incorrectly simulating the observed negative correlation when TAMV leads greater than 3 years as a positive correlation. We additionally demonstrate that the intermodel spread in the TPDV–TAMV relationship when TAMV leads is primarily linked to the persistence of TPDV and the background sea surface temperature (SST) in the northern tropical Atlantic. A relatively lower background SST in the north tropical Atlantic suppresses local convection and the remote response to TAMV-related SST anomalies. Consequently, the low-level circulation anomalies in the tropical Pacific connected to TAMV in the low-skill models are not primarily dominated by the observed easterly anomalies. Our research highlights the importance of background SST in the simulation of interbasin interaction and the necessity for model selection before applying CMIP models in relevant studies. |
doi_str_mv | 10.1007/s00382-024-07155-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153735003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096434878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-8a0b5ac683d01f298040d2f3e4867f8ce5e1ca0a58db470930e1414b36cddaa83</originalsourceid><addsrcrecordid>eNp9kLtKBDEYhYMouK6-gNWAjc3on0kyyZTL4mXByxZah2ySkSxzWZNMYec7-IY-iRlHECysEn6-czh8CJ1iuMAA_DIAEFHkUNAcOGYsr_bQDFOSTqKi-2gGFYGcM84O0VEIWwBMS17M0MOqi9Ybq5VRTRZ9v3M6fdZKu9rpz_ePRWxUF53O3AgqHV3fZcG1Q6OiNemaLe9X6zJre2ObcIwOatUEe_LzztHz9dXT8ja_e7xZLRd3uSZAYi4UbJjSpSAGcF1UAiiYoiaWipLXQltmsVagmDAbysftFlNMN6TUxiglyBydT707378ONkTZuqBtk7bafgiSYEY4YclKQs_-oNt-8F1aJwlUJSVU8LGwmCjt-xC8reXOu1b5N4lBjorlpFgmxfJbsaxSiEyhkODuxfrf6n9SX7QTfro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096434878</pqid></control><display><type>article</type><title>Interdecadal tropical Pacific–Atlantic interaction simulated in CMIP6 models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Deng, Yue ; Huang, Ping ; Zhou, Shijie ; Yang, Xianke ; Zhang, Jiayu</creator><creatorcontrib>Deng, Yue ; Huang, Ping ; Zhou, Shijie ; Yang, Xianke ; Zhang, Jiayu</creatorcontrib><description>The interaction between the tropical Pacific and Atlantic at the decadal timescale has received widespread attention. This study evaluates the simulation of the interdecadal interaction of the tropical Pacific and Atlantic in 39 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Most of CMIP6 models have a positive correlation with the observations. The high-skill models reproduce well the temporal evolution of the lead–lag correlation. However, the low-skill models cannot reproduce the observed relationship between tropical Pacific decadal variability (TPDV) and tropical Atlantic multidecadal variability (TAMV) relationship, always incorrectly simulating the observed negative correlation when TAMV leads greater than 3 years as a positive correlation. We additionally demonstrate that the intermodel spread in the TPDV–TAMV relationship when TAMV leads is primarily linked to the persistence of TPDV and the background sea surface temperature (SST) in the northern tropical Atlantic. A relatively lower background SST in the north tropical Atlantic suppresses local convection and the remote response to TAMV-related SST anomalies. Consequently, the low-level circulation anomalies in the tropical Pacific connected to TAMV in the low-skill models are not primarily dominated by the observed easterly anomalies. Our research highlights the importance of background SST in the simulation of interbasin interaction and the necessity for model selection before applying CMIP models in relevant studies.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-024-07155-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anomalies ; Circulation anomalies ; Climatology ; Cold ; Convection ; Convection cooling ; Correlation ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Intercomparison ; Oceanography ; Original Article ; Sea surface temperature ; Sea surface temperature anomalies ; Simulation ; Surface temperature ; surface water temperature ; Tropical circulation ; Variability</subject><ispartof>Climate dynamics, 2024-06, Vol.62 (6), p.5143-5155</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-8a0b5ac683d01f298040d2f3e4867f8ce5e1ca0a58db470930e1414b36cddaa83</cites><orcidid>0000-0001-7891-8848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-024-07155-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-024-07155-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Huang, Ping</creatorcontrib><creatorcontrib>Zhou, Shijie</creatorcontrib><creatorcontrib>Yang, Xianke</creatorcontrib><creatorcontrib>Zhang, Jiayu</creatorcontrib><title>Interdecadal tropical Pacific–Atlantic interaction simulated in CMIP6 models</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>The interaction between the tropical Pacific and Atlantic at the decadal timescale has received widespread attention. This study evaluates the simulation of the interdecadal interaction of the tropical Pacific and Atlantic in 39 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Most of CMIP6 models have a positive correlation with the observations. The high-skill models reproduce well the temporal evolution of the lead–lag correlation. However, the low-skill models cannot reproduce the observed relationship between tropical Pacific decadal variability (TPDV) and tropical Atlantic multidecadal variability (TAMV) relationship, always incorrectly simulating the observed negative correlation when TAMV leads greater than 3 years as a positive correlation. We additionally demonstrate that the intermodel spread in the TPDV–TAMV relationship when TAMV leads is primarily linked to the persistence of TPDV and the background sea surface temperature (SST) in the northern tropical Atlantic. A relatively lower background SST in the north tropical Atlantic suppresses local convection and the remote response to TAMV-related SST anomalies. Consequently, the low-level circulation anomalies in the tropical Pacific connected to TAMV in the low-skill models are not primarily dominated by the observed easterly anomalies. Our research highlights the importance of background SST in the simulation of interbasin interaction and the necessity for model selection before applying CMIP models in relevant studies.</description><subject>Anomalies</subject><subject>Circulation anomalies</subject><subject>Climatology</subject><subject>Cold</subject><subject>Convection</subject><subject>Convection cooling</subject><subject>Correlation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Intercomparison</subject><subject>Oceanography</subject><subject>Original Article</subject><subject>Sea surface temperature</subject><subject>Sea surface temperature anomalies</subject><subject>Simulation</subject><subject>Surface temperature</subject><subject>surface water temperature</subject><subject>Tropical circulation</subject><subject>Variability</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtKBDEYhYMouK6-gNWAjc3on0kyyZTL4mXByxZah2ySkSxzWZNMYec7-IY-iRlHECysEn6-czh8CJ1iuMAA_DIAEFHkUNAcOGYsr_bQDFOSTqKi-2gGFYGcM84O0VEIWwBMS17M0MOqi9Ybq5VRTRZ9v3M6fdZKu9rpz_ePRWxUF53O3AgqHV3fZcG1Q6OiNemaLe9X6zJre2ObcIwOatUEe_LzztHz9dXT8ja_e7xZLRd3uSZAYi4UbJjSpSAGcF1UAiiYoiaWipLXQltmsVagmDAbysftFlNMN6TUxiglyBydT707378ONkTZuqBtk7bafgiSYEY4YclKQs_-oNt-8F1aJwlUJSVU8LGwmCjt-xC8reXOu1b5N4lBjorlpFgmxfJbsaxSiEyhkODuxfrf6n9SX7QTfro</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Deng, Yue</creator><creator>Huang, Ping</creator><creator>Zhou, Shijie</creator><creator>Yang, Xianke</creator><creator>Zhang, Jiayu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7891-8848</orcidid></search><sort><creationdate>20240601</creationdate><title>Interdecadal tropical Pacific–Atlantic interaction simulated in CMIP6 models</title><author>Deng, Yue ; Huang, Ping ; Zhou, Shijie ; Yang, Xianke ; Zhang, Jiayu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-8a0b5ac683d01f298040d2f3e4867f8ce5e1ca0a58db470930e1414b36cddaa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Circulation anomalies</topic><topic>Climatology</topic><topic>Cold</topic><topic>Convection</topic><topic>Convection cooling</topic><topic>Correlation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Intercomparison</topic><topic>Oceanography</topic><topic>Original Article</topic><topic>Sea surface temperature</topic><topic>Sea surface temperature anomalies</topic><topic>Simulation</topic><topic>Surface temperature</topic><topic>surface water temperature</topic><topic>Tropical circulation</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Huang, Ping</creatorcontrib><creatorcontrib>Zhou, Shijie</creatorcontrib><creatorcontrib>Yang, Xianke</creatorcontrib><creatorcontrib>Zhang, Jiayu</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Yue</au><au>Huang, Ping</au><au>Zhou, Shijie</au><au>Yang, Xianke</au><au>Zhang, Jiayu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdecadal tropical Pacific–Atlantic interaction simulated in CMIP6 models</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>62</volume><issue>6</issue><spage>5143</spage><epage>5155</epage><pages>5143-5155</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>The interaction between the tropical Pacific and Atlantic at the decadal timescale has received widespread attention. This study evaluates the simulation of the interdecadal interaction of the tropical Pacific and Atlantic in 39 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Most of CMIP6 models have a positive correlation with the observations. The high-skill models reproduce well the temporal evolution of the lead–lag correlation. However, the low-skill models cannot reproduce the observed relationship between tropical Pacific decadal variability (TPDV) and tropical Atlantic multidecadal variability (TAMV) relationship, always incorrectly simulating the observed negative correlation when TAMV leads greater than 3 years as a positive correlation. We additionally demonstrate that the intermodel spread in the TPDV–TAMV relationship when TAMV leads is primarily linked to the persistence of TPDV and the background sea surface temperature (SST) in the northern tropical Atlantic. A relatively lower background SST in the north tropical Atlantic suppresses local convection and the remote response to TAMV-related SST anomalies. Consequently, the low-level circulation anomalies in the tropical Pacific connected to TAMV in the low-skill models are not primarily dominated by the observed easterly anomalies. Our research highlights the importance of background SST in the simulation of interbasin interaction and the necessity for model selection before applying CMIP models in relevant studies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-024-07155-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7891-8848</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2024-06, Vol.62 (6), p.5143-5155 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153735003 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anomalies Circulation anomalies Climatology Cold Convection Convection cooling Correlation Earth and Environmental Science Earth Sciences Geophysics/Geodesy Intercomparison Oceanography Original Article Sea surface temperature Sea surface temperature anomalies Simulation Surface temperature surface water temperature Tropical circulation Variability |
title | Interdecadal tropical Pacific–Atlantic interaction simulated in CMIP6 models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdecadal%20tropical%20Pacific%E2%80%93Atlantic%20interaction%20simulated%20in%20CMIP6%20models&rft.jtitle=Climate%20dynamics&rft.au=Deng,%20Yue&rft.date=2024-06-01&rft.volume=62&rft.issue=6&rft.spage=5143&rft.epage=5155&rft.pages=5143-5155&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-024-07155-9&rft_dat=%3Cproquest_cross%3E3096434878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096434878&rft_id=info:pmid/&rfr_iscdi=true |