Thermo-Switchable Enzyme@Metal–Organic Framework for Selective Biocatalysis and Biosensing
The stimulus-responsive regulation of enzyme catalytic activity and selectivity provides a new opportunity to extend the functionality and efficiency of immobilized enzymes. This work aims to design and synthesize a thermo-switchable enzyme@MOF for size-selective biocatalysis and biosensing through...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-08, Vol.16 (31), p.40836-40847 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40847 |
---|---|
container_issue | 31 |
container_start_page | 40836 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Lin, Jiale Shen, Cai Cheng, Yongfa Lai, Oi-Ming Tan, Chin-Ping Panpipat, Worawan Cheong, Ling-Zhi |
description | The stimulus-responsive regulation of enzyme catalytic activity and selectivity provides a new opportunity to extend the functionality and efficiency of immobilized enzymes. This work aims to design and synthesize a thermo-switchable enzyme@MOF for size-selective biocatalysis and biosensing through the immobilization of Candida rugosa lipase (CRL) within ZIF-8 functionalized with thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAM) (CRL@ZIF-8-PNIPAM). Unlike free CRL, which does not demonstrate substrate selectivity, we can reversibly tune the pore size of the ZIF-8-PNIPAM nanostructures (open pores or blocked pores) through temperature stimulus and subsequently modulate the substrate selectivity of CRL@ZIF-8-PNIPAM. CRL@ZIF-8-PNIPAM had the highest hydrolytic activity for small molecules (12 mM p-nitrophenol/mg protein/min, 4-nitrophenyl butyrate (p-NP Be)) and the lowest hydrolytic activity for large molecules (0.16 mM p-nitrophenol/mg protein/min, 4-nitrophenyl palmitate (p-NP P)). In addition, CRL@ZIF-8-PNIPAM demonstrated thermo-switchable behavior for large molecules (p-NP P). The p-NP P hydrolytic activity of CRL@ZIF-8-PNIPAM was significantly lower at 40 °C (blocked pores) than at 27 °C (open pores). However, the transition of blocked pores and open pores is a gradual process that resulted in a delay in the “thermo-switchable” catalytic behavior of CRL@ZIF-8-PNIPAM during thermal cycling. CRL@ZIF-8-PNIPAM was also successfully used for the fabrication of electrochemical biosensors for the selective biosensing of pesticides with different molecular sizes. |
doi_str_mv | 10.1021/acsami.4c05208 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153734669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084771697</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-e0cafc07d72b1fe30ec7844119321069ce75becd5c72d3ca6c3af62de01fa0b3</originalsourceid><addsrcrecordid>eNqFkM1OwkAUhSdGI4huXZoujUlx_jrT7lQCaoJhAUuTZjq9hcH-4EyR4Mp38A19EkuK7oyre3LznbP4EDonuE8wJddKO1WYPtc4oDg8QF0Sce6HNKCHv5nzDjpxbomxYBQHx6jDogaPQtFFz7MF2KLypxtT64VKcvCG5fu2gJsnqFX-9fE5sXNVGu2NrCpgU9kXL6usN4UcdG3ewLszlVYNunXGeapMdw8HpTPl_BQdZSp3cLa_PTQbDWeDB388uX8c3I59RXlY-4C1yjSWqaQJyYBh0DLknJCIUYJFpEEGCeg00JKmTCuhmcoETQGTTOGE9dBlO7uy1esaXB0XxmnIc1VCtXYxIwGTjAsR_Y_ikEtJRCQbtN-i2lbOWcjilTWFstuY4HjnPm7dx3v3TeFiv71OCkh_8R_ZDXDVAk0xXlZrWzZS_lr7BgMRkNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084771697</pqid></control><display><type>article</type><title>Thermo-Switchable Enzyme@Metal–Organic Framework for Selective Biocatalysis and Biosensing</title><source>American Chemical Society Publications</source><creator>Lin, Jiale ; Shen, Cai ; Cheng, Yongfa ; Lai, Oi-Ming ; Tan, Chin-Ping ; Panpipat, Worawan ; Cheong, Ling-Zhi</creator><creatorcontrib>Lin, Jiale ; Shen, Cai ; Cheng, Yongfa ; Lai, Oi-Ming ; Tan, Chin-Ping ; Panpipat, Worawan ; Cheong, Ling-Zhi</creatorcontrib><description>The stimulus-responsive regulation of enzyme catalytic activity and selectivity provides a new opportunity to extend the functionality and efficiency of immobilized enzymes. This work aims to design and synthesize a thermo-switchable enzyme@MOF for size-selective biocatalysis and biosensing through the immobilization of Candida rugosa lipase (CRL) within ZIF-8 functionalized with thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAM) (CRL@ZIF-8-PNIPAM). Unlike free CRL, which does not demonstrate substrate selectivity, we can reversibly tune the pore size of the ZIF-8-PNIPAM nanostructures (open pores or blocked pores) through temperature stimulus and subsequently modulate the substrate selectivity of CRL@ZIF-8-PNIPAM. CRL@ZIF-8-PNIPAM had the highest hydrolytic activity for small molecules (12 mM p-nitrophenol/mg protein/min, 4-nitrophenyl butyrate (p-NP Be)) and the lowest hydrolytic activity for large molecules (0.16 mM p-nitrophenol/mg protein/min, 4-nitrophenyl palmitate (p-NP P)). In addition, CRL@ZIF-8-PNIPAM demonstrated thermo-switchable behavior for large molecules (p-NP P). The p-NP P hydrolytic activity of CRL@ZIF-8-PNIPAM was significantly lower at 40 °C (blocked pores) than at 27 °C (open pores). However, the transition of blocked pores and open pores is a gradual process that resulted in a delay in the “thermo-switchable” catalytic behavior of CRL@ZIF-8-PNIPAM during thermal cycling. CRL@ZIF-8-PNIPAM was also successfully used for the fabrication of electrochemical biosensors for the selective biosensing of pesticides with different molecular sizes.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c05208</identifier><identifier>PMID: 39052986</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>biocatalysis ; biosensors ; butyrates ; Candida rugosa ; carboxylic ester hydrolases ; Energy, Environmental, and Catalysis Applications ; nanomaterials ; palmitates ; polymers ; porosity ; temperature</subject><ispartof>ACS applied materials & interfaces, 2024-08, Vol.16 (31), p.40836-40847</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-e0cafc07d72b1fe30ec7844119321069ce75becd5c72d3ca6c3af62de01fa0b3</cites><orcidid>0000-0001-5825-4028 ; 0000-0003-4177-4072 ; 0000-0001-6760-8553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c05208$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c05208$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39052986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Jiale</creatorcontrib><creatorcontrib>Shen, Cai</creatorcontrib><creatorcontrib>Cheng, Yongfa</creatorcontrib><creatorcontrib>Lai, Oi-Ming</creatorcontrib><creatorcontrib>Tan, Chin-Ping</creatorcontrib><creatorcontrib>Panpipat, Worawan</creatorcontrib><creatorcontrib>Cheong, Ling-Zhi</creatorcontrib><title>Thermo-Switchable Enzyme@Metal–Organic Framework for Selective Biocatalysis and Biosensing</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The stimulus-responsive regulation of enzyme catalytic activity and selectivity provides a new opportunity to extend the functionality and efficiency of immobilized enzymes. This work aims to design and synthesize a thermo-switchable enzyme@MOF for size-selective biocatalysis and biosensing through the immobilization of Candida rugosa lipase (CRL) within ZIF-8 functionalized with thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAM) (CRL@ZIF-8-PNIPAM). Unlike free CRL, which does not demonstrate substrate selectivity, we can reversibly tune the pore size of the ZIF-8-PNIPAM nanostructures (open pores or blocked pores) through temperature stimulus and subsequently modulate the substrate selectivity of CRL@ZIF-8-PNIPAM. CRL@ZIF-8-PNIPAM had the highest hydrolytic activity for small molecules (12 mM p-nitrophenol/mg protein/min, 4-nitrophenyl butyrate (p-NP Be)) and the lowest hydrolytic activity for large molecules (0.16 mM p-nitrophenol/mg protein/min, 4-nitrophenyl palmitate (p-NP P)). In addition, CRL@ZIF-8-PNIPAM demonstrated thermo-switchable behavior for large molecules (p-NP P). The p-NP P hydrolytic activity of CRL@ZIF-8-PNIPAM was significantly lower at 40 °C (blocked pores) than at 27 °C (open pores). However, the transition of blocked pores and open pores is a gradual process that resulted in a delay in the “thermo-switchable” catalytic behavior of CRL@ZIF-8-PNIPAM during thermal cycling. CRL@ZIF-8-PNIPAM was also successfully used for the fabrication of electrochemical biosensors for the selective biosensing of pesticides with different molecular sizes.</description><subject>biocatalysis</subject><subject>biosensors</subject><subject>butyrates</subject><subject>Candida rugosa</subject><subject>carboxylic ester hydrolases</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>nanomaterials</subject><subject>palmitates</subject><subject>polymers</subject><subject>porosity</subject><subject>temperature</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwkAUhSdGI4huXZoujUlx_jrT7lQCaoJhAUuTZjq9hcH-4EyR4Mp38A19EkuK7oyre3LznbP4EDonuE8wJddKO1WYPtc4oDg8QF0Sce6HNKCHv5nzDjpxbomxYBQHx6jDogaPQtFFz7MF2KLypxtT64VKcvCG5fu2gJsnqFX-9fE5sXNVGu2NrCpgU9kXL6usN4UcdG3ewLszlVYNunXGeapMdw8HpTPl_BQdZSp3cLa_PTQbDWeDB388uX8c3I59RXlY-4C1yjSWqaQJyYBh0DLknJCIUYJFpEEGCeg00JKmTCuhmcoETQGTTOGE9dBlO7uy1esaXB0XxmnIc1VCtXYxIwGTjAsR_Y_ikEtJRCQbtN-i2lbOWcjilTWFstuY4HjnPm7dx3v3TeFiv71OCkh_8R_ZDXDVAk0xXlZrWzZS_lr7BgMRkNY</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Lin, Jiale</creator><creator>Shen, Cai</creator><creator>Cheng, Yongfa</creator><creator>Lai, Oi-Ming</creator><creator>Tan, Chin-Ping</creator><creator>Panpipat, Worawan</creator><creator>Cheong, Ling-Zhi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5825-4028</orcidid><orcidid>https://orcid.org/0000-0003-4177-4072</orcidid><orcidid>https://orcid.org/0000-0001-6760-8553</orcidid></search><sort><creationdate>20240807</creationdate><title>Thermo-Switchable Enzyme@Metal–Organic Framework for Selective Biocatalysis and Biosensing</title><author>Lin, Jiale ; Shen, Cai ; Cheng, Yongfa ; Lai, Oi-Ming ; Tan, Chin-Ping ; Panpipat, Worawan ; Cheong, Ling-Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-e0cafc07d72b1fe30ec7844119321069ce75becd5c72d3ca6c3af62de01fa0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biocatalysis</topic><topic>biosensors</topic><topic>butyrates</topic><topic>Candida rugosa</topic><topic>carboxylic ester hydrolases</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>nanomaterials</topic><topic>palmitates</topic><topic>polymers</topic><topic>porosity</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jiale</creatorcontrib><creatorcontrib>Shen, Cai</creatorcontrib><creatorcontrib>Cheng, Yongfa</creatorcontrib><creatorcontrib>Lai, Oi-Ming</creatorcontrib><creatorcontrib>Tan, Chin-Ping</creatorcontrib><creatorcontrib>Panpipat, Worawan</creatorcontrib><creatorcontrib>Cheong, Ling-Zhi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jiale</au><au>Shen, Cai</au><au>Cheng, Yongfa</au><au>Lai, Oi-Ming</au><au>Tan, Chin-Ping</au><au>Panpipat, Worawan</au><au>Cheong, Ling-Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-Switchable Enzyme@Metal–Organic Framework for Selective Biocatalysis and Biosensing</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-08-07</date><risdate>2024</risdate><volume>16</volume><issue>31</issue><spage>40836</spage><epage>40847</epage><pages>40836-40847</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The stimulus-responsive regulation of enzyme catalytic activity and selectivity provides a new opportunity to extend the functionality and efficiency of immobilized enzymes. This work aims to design and synthesize a thermo-switchable enzyme@MOF for size-selective biocatalysis and biosensing through the immobilization of Candida rugosa lipase (CRL) within ZIF-8 functionalized with thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAM) (CRL@ZIF-8-PNIPAM). Unlike free CRL, which does not demonstrate substrate selectivity, we can reversibly tune the pore size of the ZIF-8-PNIPAM nanostructures (open pores or blocked pores) through temperature stimulus and subsequently modulate the substrate selectivity of CRL@ZIF-8-PNIPAM. CRL@ZIF-8-PNIPAM had the highest hydrolytic activity for small molecules (12 mM p-nitrophenol/mg protein/min, 4-nitrophenyl butyrate (p-NP Be)) and the lowest hydrolytic activity for large molecules (0.16 mM p-nitrophenol/mg protein/min, 4-nitrophenyl palmitate (p-NP P)). In addition, CRL@ZIF-8-PNIPAM demonstrated thermo-switchable behavior for large molecules (p-NP P). The p-NP P hydrolytic activity of CRL@ZIF-8-PNIPAM was significantly lower at 40 °C (blocked pores) than at 27 °C (open pores). However, the transition of blocked pores and open pores is a gradual process that resulted in a delay in the “thermo-switchable” catalytic behavior of CRL@ZIF-8-PNIPAM during thermal cycling. CRL@ZIF-8-PNIPAM was also successfully used for the fabrication of electrochemical biosensors for the selective biosensing of pesticides with different molecular sizes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39052986</pmid><doi>10.1021/acsami.4c05208</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5825-4028</orcidid><orcidid>https://orcid.org/0000-0003-4177-4072</orcidid><orcidid>https://orcid.org/0000-0001-6760-8553</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-08, Vol.16 (31), p.40836-40847 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153734669 |
source | American Chemical Society Publications |
subjects | biocatalysis biosensors butyrates Candida rugosa carboxylic ester hydrolases Energy, Environmental, and Catalysis Applications nanomaterials palmitates polymers porosity temperature |
title | Thermo-Switchable Enzyme@Metal–Organic Framework for Selective Biocatalysis and Biosensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-Switchable%20Enzyme@Metal%E2%80%93Organic%20Framework%20for%20Selective%20Biocatalysis%20and%20Biosensing&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lin,%20Jiale&rft.date=2024-08-07&rft.volume=16&rft.issue=31&rft.spage=40836&rft.epage=40847&rft.pages=40836-40847&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c05208&rft_dat=%3Cproquest_cross%3E3084771697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084771697&rft_id=info:pmid/39052986&rfr_iscdi=true |