Study of the antidiabetic mechanism of berberine compound on FOXO1 transcription factor through molecular docking and molecular dynamics simulations

Context Diabetes mellitus (DM) is a metabolic disorder disease that causes hyperglycemia conditions and associated with various chronic complications leading to mortality. Due to high toxicity of conventional diabetic drugs, the exploration of natural compounds as alternative diabetes treatments has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2024-08, Vol.30 (8), p.260-260, Article 260
Hauptverfasser: Maksum, Iman Permana, Rustaman, Rustaman, Deawati, Yusi, Rukayadi, Yaya, Utami, Ayudiah Rizki, Nafisa, Zahra Khira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 8
container_start_page 260
container_title Journal of molecular modeling
container_volume 30
creator Maksum, Iman Permana
Rustaman, Rustaman
Deawati, Yusi
Rukayadi, Yaya
Utami, Ayudiah Rizki
Nafisa, Zahra Khira
description Context Diabetes mellitus (DM) is a metabolic disorder disease that causes hyperglycemia conditions and associated with various chronic complications leading to mortality. Due to high toxicity of conventional diabetic drugs, the exploration of natural compounds as alternative diabetes treatments has been widely carried out. Previous in silico studies have highlighted berberine, a natural compound, as a promising alternative in antidiabetic therapy, potentially acting through various pathways, including the inhibition of the FOXO1 transcription factor in the gluconeogenesis pathway. However, the specific mechanism by which berberine interacts with FOXO1 remains unclear, and research in this area is relatively limited. Therefore, this study aims to determine the stability of berberine structure with FOXO1 based on RMSD, RMSF, binding energy, and trajectory analysis to determine the potential of berberine to inhibit the gluconeogenesis pathway. This research was conducted by in silico method with molecular docking using AutoDock4.2 and molecular dynamics study using Amber20, then visualized by VMD. Methods Docking between ligand and FOXO1 receptor was carried out with Autodock4.2. For molecular dynamics simulations, the force fields of DNA.OL15, protein.ff14SB, gaff2, and tip3p were used.
doi_str_mv 10.1007/s00894-024-06060-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153731909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077945340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-75ecf1387423f3238f526116a0e27570461c5fad0553599976b0fc6497ee496e3</originalsourceid><addsrcrecordid>eNqFkc2OFCEUhYnROJ1xXsCFIXHjpvQCBRRLM3HUZJJeqIk7QlPQzVhAC1WLfg8fWNoaf-JCA-Qm53733JCD0FMCLwmAfFUBBtV3QNsT7XTiAdqA6oeOA2UP0YYIAh1VPVygq1rvAIBQLjilj9EFG9RAFCUb9O3DvIwnnD2eDw6bNIcxmJ2bg8XR2YNJocZzd-dKuyE5bHM85iWNOCd8s_28JXguJlVbwnEOTfPGzrk0u5KX_QHHPDm7TKbgMdsvIe3bkvFP9ZRMDLbiGmITzhb1CXrkzVTd1X29RJ9u3ny8ftfdbt--v35921k6qLmT3FlP2CB7yjyjbPCcCkKEAUcll9ALYrk3I3DOuFJKih14K3olneuVcOwSvVh9jyV_XVyddQzVumkyyeWlakY4k4woUP9HQUqlqKC0oc__Qu_yUlL7yEr1nPXQKLpStuRai_P6WEI05aQJ6HPCek1Yt4T1j4S1aEPP7q2XXXTjr5GfeTaArUBtrbR35ffuf9h-B_ATsZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077945340</pqid></control><display><type>article</type><title>Study of the antidiabetic mechanism of berberine compound on FOXO1 transcription factor through molecular docking and molecular dynamics simulations</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Maksum, Iman Permana ; Rustaman, Rustaman ; Deawati, Yusi ; Rukayadi, Yaya ; Utami, Ayudiah Rizki ; Nafisa, Zahra Khira</creator><creatorcontrib>Maksum, Iman Permana ; Rustaman, Rustaman ; Deawati, Yusi ; Rukayadi, Yaya ; Utami, Ayudiah Rizki ; Nafisa, Zahra Khira</creatorcontrib><description>Context Diabetes mellitus (DM) is a metabolic disorder disease that causes hyperglycemia conditions and associated with various chronic complications leading to mortality. Due to high toxicity of conventional diabetic drugs, the exploration of natural compounds as alternative diabetes treatments has been widely carried out. Previous in silico studies have highlighted berberine, a natural compound, as a promising alternative in antidiabetic therapy, potentially acting through various pathways, including the inhibition of the FOXO1 transcription factor in the gluconeogenesis pathway. However, the specific mechanism by which berberine interacts with FOXO1 remains unclear, and research in this area is relatively limited. Therefore, this study aims to determine the stability of berberine structure with FOXO1 based on RMSD, RMSF, binding energy, and trajectory analysis to determine the potential of berberine to inhibit the gluconeogenesis pathway. This research was conducted by in silico method with molecular docking using AutoDock4.2 and molecular dynamics study using Amber20, then visualized by VMD. Methods Docking between ligand and FOXO1 receptor was carried out with Autodock4.2. For molecular dynamics simulations, the force fields of DNA.OL15, protein.ff14SB, gaff2, and tip3p were used.</description><identifier>ISSN: 1610-2940</identifier><identifier>ISSN: 0948-5023</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-024-06060-6</identifier><identifier>PMID: 38981921</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antidiabetics ; berberine ; Berberine - chemistry ; Berberine - pharmacology ; Binding Sites ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; computer simulation ; Diabetes ; Diabetes mellitus ; Dynamic structural analysis ; energy ; Forkhead Box Protein O1 - chemistry ; Forkhead Box Protein O1 - metabolism ; gluconeogenesis ; Humans ; Hyperglycemia ; Hypoglycemic Agents - chemistry ; Hypoglycemic Agents - pharmacology ; Ligands ; Metabolic disorders ; Molecular docking ; Molecular Docking Simulation ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Medicine ; Molecular structure ; mortality ; Original Paper ; Protein Binding ; Theoretical and Computational Chemistry ; therapeutics ; Toxic diseases ; toxicity ; Trajectory analysis ; Transcription factors</subject><ispartof>Journal of molecular modeling, 2024-08, Vol.30 (8), p.260-260, Article 260</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-75ecf1387423f3238f526116a0e27570461c5fad0553599976b0fc6497ee496e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-024-06060-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-024-06060-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38981921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maksum, Iman Permana</creatorcontrib><creatorcontrib>Rustaman, Rustaman</creatorcontrib><creatorcontrib>Deawati, Yusi</creatorcontrib><creatorcontrib>Rukayadi, Yaya</creatorcontrib><creatorcontrib>Utami, Ayudiah Rizki</creatorcontrib><creatorcontrib>Nafisa, Zahra Khira</creatorcontrib><title>Study of the antidiabetic mechanism of berberine compound on FOXO1 transcription factor through molecular docking and molecular dynamics simulations</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>Context Diabetes mellitus (DM) is a metabolic disorder disease that causes hyperglycemia conditions and associated with various chronic complications leading to mortality. Due to high toxicity of conventional diabetic drugs, the exploration of natural compounds as alternative diabetes treatments has been widely carried out. Previous in silico studies have highlighted berberine, a natural compound, as a promising alternative in antidiabetic therapy, potentially acting through various pathways, including the inhibition of the FOXO1 transcription factor in the gluconeogenesis pathway. However, the specific mechanism by which berberine interacts with FOXO1 remains unclear, and research in this area is relatively limited. Therefore, this study aims to determine the stability of berberine structure with FOXO1 based on RMSD, RMSF, binding energy, and trajectory analysis to determine the potential of berberine to inhibit the gluconeogenesis pathway. This research was conducted by in silico method with molecular docking using AutoDock4.2 and molecular dynamics study using Amber20, then visualized by VMD. Methods Docking between ligand and FOXO1 receptor was carried out with Autodock4.2. For molecular dynamics simulations, the force fields of DNA.OL15, protein.ff14SB, gaff2, and tip3p were used.</description><subject>Antidiabetics</subject><subject>berberine</subject><subject>Berberine - chemistry</subject><subject>Berberine - pharmacology</subject><subject>Binding Sites</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>computer simulation</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Dynamic structural analysis</subject><subject>energy</subject><subject>Forkhead Box Protein O1 - chemistry</subject><subject>Forkhead Box Protein O1 - metabolism</subject><subject>gluconeogenesis</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Hypoglycemic Agents - chemistry</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Ligands</subject><subject>Metabolic disorders</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Medicine</subject><subject>Molecular structure</subject><subject>mortality</subject><subject>Original Paper</subject><subject>Protein Binding</subject><subject>Theoretical and Computational Chemistry</subject><subject>therapeutics</subject><subject>Toxic diseases</subject><subject>toxicity</subject><subject>Trajectory analysis</subject><subject>Transcription factors</subject><issn>1610-2940</issn><issn>0948-5023</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2OFCEUhYnROJ1xXsCFIXHjpvQCBRRLM3HUZJJeqIk7QlPQzVhAC1WLfg8fWNoaf-JCA-Qm53733JCD0FMCLwmAfFUBBtV3QNsT7XTiAdqA6oeOA2UP0YYIAh1VPVygq1rvAIBQLjilj9EFG9RAFCUb9O3DvIwnnD2eDw6bNIcxmJ2bg8XR2YNJocZzd-dKuyE5bHM85iWNOCd8s_28JXguJlVbwnEOTfPGzrk0u5KX_QHHPDm7TKbgMdsvIe3bkvFP9ZRMDLbiGmITzhb1CXrkzVTd1X29RJ9u3ny8ftfdbt--v35921k6qLmT3FlP2CB7yjyjbPCcCkKEAUcll9ALYrk3I3DOuFJKih14K3olneuVcOwSvVh9jyV_XVyddQzVumkyyeWlakY4k4woUP9HQUqlqKC0oc__Qu_yUlL7yEr1nPXQKLpStuRai_P6WEI05aQJ6HPCek1Yt4T1j4S1aEPP7q2XXXTjr5GfeTaArUBtrbR35ffuf9h-B_ATsZM</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Maksum, Iman Permana</creator><creator>Rustaman, Rustaman</creator><creator>Deawati, Yusi</creator><creator>Rukayadi, Yaya</creator><creator>Utami, Ayudiah Rizki</creator><creator>Nafisa, Zahra Khira</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240801</creationdate><title>Study of the antidiabetic mechanism of berberine compound on FOXO1 transcription factor through molecular docking and molecular dynamics simulations</title><author>Maksum, Iman Permana ; Rustaman, Rustaman ; Deawati, Yusi ; Rukayadi, Yaya ; Utami, Ayudiah Rizki ; Nafisa, Zahra Khira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-75ecf1387423f3238f526116a0e27570461c5fad0553599976b0fc6497ee496e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antidiabetics</topic><topic>berberine</topic><topic>Berberine - chemistry</topic><topic>Berberine - pharmacology</topic><topic>Binding Sites</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>computer simulation</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Dynamic structural analysis</topic><topic>energy</topic><topic>Forkhead Box Protein O1 - chemistry</topic><topic>Forkhead Box Protein O1 - metabolism</topic><topic>gluconeogenesis</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Hypoglycemic Agents - chemistry</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Ligands</topic><topic>Metabolic disorders</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Medicine</topic><topic>Molecular structure</topic><topic>mortality</topic><topic>Original Paper</topic><topic>Protein Binding</topic><topic>Theoretical and Computational Chemistry</topic><topic>therapeutics</topic><topic>Toxic diseases</topic><topic>toxicity</topic><topic>Trajectory analysis</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksum, Iman Permana</creatorcontrib><creatorcontrib>Rustaman, Rustaman</creatorcontrib><creatorcontrib>Deawati, Yusi</creatorcontrib><creatorcontrib>Rukayadi, Yaya</creatorcontrib><creatorcontrib>Utami, Ayudiah Rizki</creatorcontrib><creatorcontrib>Nafisa, Zahra Khira</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksum, Iman Permana</au><au>Rustaman, Rustaman</au><au>Deawati, Yusi</au><au>Rukayadi, Yaya</au><au>Utami, Ayudiah Rizki</au><au>Nafisa, Zahra Khira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the antidiabetic mechanism of berberine compound on FOXO1 transcription factor through molecular docking and molecular dynamics simulations</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>30</volume><issue>8</issue><spage>260</spage><epage>260</epage><pages>260-260</pages><artnum>260</artnum><issn>1610-2940</issn><issn>0948-5023</issn><eissn>0948-5023</eissn><abstract>Context Diabetes mellitus (DM) is a metabolic disorder disease that causes hyperglycemia conditions and associated with various chronic complications leading to mortality. Due to high toxicity of conventional diabetic drugs, the exploration of natural compounds as alternative diabetes treatments has been widely carried out. Previous in silico studies have highlighted berberine, a natural compound, as a promising alternative in antidiabetic therapy, potentially acting through various pathways, including the inhibition of the FOXO1 transcription factor in the gluconeogenesis pathway. However, the specific mechanism by which berberine interacts with FOXO1 remains unclear, and research in this area is relatively limited. Therefore, this study aims to determine the stability of berberine structure with FOXO1 based on RMSD, RMSF, binding energy, and trajectory analysis to determine the potential of berberine to inhibit the gluconeogenesis pathway. This research was conducted by in silico method with molecular docking using AutoDock4.2 and molecular dynamics study using Amber20, then visualized by VMD. Methods Docking between ligand and FOXO1 receptor was carried out with Autodock4.2. For molecular dynamics simulations, the force fields of DNA.OL15, protein.ff14SB, gaff2, and tip3p were used.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38981921</pmid><doi>10.1007/s00894-024-06060-6</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2024-08, Vol.30 (8), p.260-260, Article 260
issn 1610-2940
0948-5023
0948-5023
language eng
recordid cdi_proquest_miscellaneous_3153731909
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Antidiabetics
berberine
Berberine - chemistry
Berberine - pharmacology
Binding Sites
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
computer simulation
Diabetes
Diabetes mellitus
Dynamic structural analysis
energy
Forkhead Box Protein O1 - chemistry
Forkhead Box Protein O1 - metabolism
gluconeogenesis
Humans
Hyperglycemia
Hypoglycemic Agents - chemistry
Hypoglycemic Agents - pharmacology
Ligands
Metabolic disorders
Molecular docking
Molecular Docking Simulation
Molecular dynamics
Molecular Dynamics Simulation
Molecular Medicine
Molecular structure
mortality
Original Paper
Protein Binding
Theoretical and Computational Chemistry
therapeutics
Toxic diseases
toxicity
Trajectory analysis
Transcription factors
title Study of the antidiabetic mechanism of berberine compound on FOXO1 transcription factor through molecular docking and molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20antidiabetic%20mechanism%20of%20berberine%20compound%20on%20FOXO1%20transcription%20factor%20through%20molecular%20docking%20and%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Maksum,%20Iman%20Permana&rft.date=2024-08-01&rft.volume=30&rft.issue=8&rft.spage=260&rft.epage=260&rft.pages=260-260&rft.artnum=260&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-024-06060-6&rft_dat=%3Cproquest_cross%3E3077945340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077945340&rft_id=info:pmid/38981921&rfr_iscdi=true