Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species
The diversity of phytoplankton influences the structure of and processes that occur in marine ecosystems, with size and other morphological traits being crucial for nutrient uptake and retention in the euphotic zone. Our research introduces a machine learning method that can facilitate the analysis...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2024-08, Vol.16 (15), p.2160 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 2160 |
container_title | Water (Basel) |
container_volume | 16 |
creator | Marzidovšek, Martin Mozetič, Patricija Francé, Janja Podpečan, Vid |
description | The diversity of phytoplankton influences the structure of and processes that occur in marine ecosystems, with size and other morphological traits being crucial for nutrient uptake and retention in the euphotic zone. Our research introduces a machine learning method that can facilitate the analysis of phytoplankton functional traits from image data. We use computer vision to identify and quantify phytoplankton species and estimate size-related traits based on cell morphology. The study uses transfer learning, where generic, pre-trained YOLOv8 computer vision models are fine-tuned with microscope image data from the Adriatic Sea. The study shows that, for this task, it is possible to effectively fine-tune models trained on out-of-domain images and that this is possible with a small training dataset. The results show high accuracy in detecting and segmenting phytoplankton cells from the microscopic images of the two selected phytoplankton taxa. For detection, the model achieves AP scores of 88.1% for Pseudo-nitzschia cf. delicatissima and 90.9% for Pseudo-nitzschia cf. calliantha, while for segmentation, the scores are 88.4% for Pseudo-nitzschia cf. delicatissima and 91.2% for Pseudo-nitzschia cf. calliantha. Compared to manual image analysis, the developed automatic method significantly increases the number of samples that can be processed. |
doi_str_mv | 10.3390/w16152160 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153731510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804515690</galeid><sourcerecordid>A804515690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-d9e0cb106e00c3c37b95fa5c132addf29b39d31bfbce58b636f13305608194333</originalsourceid><addsrcrecordid>eNpdkVFr3DAMx0PZoEd7D_0Ghr6sD7nKUZyLH49jawtXNthtr8Fx5J5Lzs7shNJ9-jpcKWMSSEL6_QVCWXbFYYUo4faFV1wUvIKzbFHAGvOyLPmnf-rzbBnjMyQrZV0LWGSHrT8O00iB_bbResf2pA_O_pkoMuMDe_RhOPjeP1mterZxqn-NNjLlOvbQkRutSYNxFnrD9i-e_Yg0dT53dvwb9cEq9nMgbSleZp-N6iMt3_NF9uvb1_32Pt99v3vYbna5xqIc804S6JZDRQAaNa5bKYwSmmOhus4UskXZIW9Nq0nUbYWV4YggKqi5LBHxIvty2jsEP18xNkcbNfW9cuSn2CAXuE6BQ0Kv_0Of_RTSiYkCCbJIoEzU6kQ9qZ4a64wfg9LJOzpa7R0Zm_qbGkrBRSXntTcngQ4-xkCmGYI9qvDacGjmPzUff8I35qaEUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090923739</pqid></control><display><type>article</type><title>Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Marzidovšek, Martin ; Mozetič, Patricija ; Francé, Janja ; Podpečan, Vid</creator><creatorcontrib>Marzidovšek, Martin ; Mozetič, Patricija ; Francé, Janja ; Podpečan, Vid</creatorcontrib><description>The diversity of phytoplankton influences the structure of and processes that occur in marine ecosystems, with size and other morphological traits being crucial for nutrient uptake and retention in the euphotic zone. Our research introduces a machine learning method that can facilitate the analysis of phytoplankton functional traits from image data. We use computer vision to identify and quantify phytoplankton species and estimate size-related traits based on cell morphology. The study uses transfer learning, where generic, pre-trained YOLOv8 computer vision models are fine-tuned with microscope image data from the Adriatic Sea. The study shows that, for this task, it is possible to effectively fine-tune models trained on out-of-domain images and that this is possible with a small training dataset. The results show high accuracy in detecting and segmenting phytoplankton cells from the microscopic images of the two selected phytoplankton taxa. For detection, the model achieves AP scores of 88.1% for Pseudo-nitzschia cf. delicatissima and 90.9% for Pseudo-nitzschia cf. calliantha, while for segmentation, the scores are 88.4% for Pseudo-nitzschia cf. delicatissima and 91.2% for Pseudo-nitzschia cf. calliantha. Compared to manual image analysis, the developed automatic method significantly increases the number of samples that can be processed.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16152160</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adriatic Sea ; Aquatic ecology ; Automation ; Carbon ; Carbon cycle (Biogeochemistry) ; cell structures ; Classification ; computer vision ; data collection ; Datasets ; Deep learning ; euphotic zone ; Identification ; image analysis ; Machine vision ; Methods ; Microorganisms ; Microscopy ; Morphology ; Neural networks ; nutrient uptake ; phytoplankton ; Plankton ; Pseudo-nitzschia ; Seawater ; species ; water</subject><ispartof>Water (Basel), 2024-08, Vol.16 (15), p.2160</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-d9e0cb106e00c3c37b95fa5c132addf29b39d31bfbce58b636f13305608194333</cites><orcidid>0000-0002-7498-9224 ; 0000-0001-8638-1884 ; 0000-0002-4668-4511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Marzidovšek, Martin</creatorcontrib><creatorcontrib>Mozetič, Patricija</creatorcontrib><creatorcontrib>Francé, Janja</creatorcontrib><creatorcontrib>Podpečan, Vid</creatorcontrib><title>Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species</title><title>Water (Basel)</title><description>The diversity of phytoplankton influences the structure of and processes that occur in marine ecosystems, with size and other morphological traits being crucial for nutrient uptake and retention in the euphotic zone. Our research introduces a machine learning method that can facilitate the analysis of phytoplankton functional traits from image data. We use computer vision to identify and quantify phytoplankton species and estimate size-related traits based on cell morphology. The study uses transfer learning, where generic, pre-trained YOLOv8 computer vision models are fine-tuned with microscope image data from the Adriatic Sea. The study shows that, for this task, it is possible to effectively fine-tune models trained on out-of-domain images and that this is possible with a small training dataset. The results show high accuracy in detecting and segmenting phytoplankton cells from the microscopic images of the two selected phytoplankton taxa. For detection, the model achieves AP scores of 88.1% for Pseudo-nitzschia cf. delicatissima and 90.9% for Pseudo-nitzschia cf. calliantha, while for segmentation, the scores are 88.4% for Pseudo-nitzschia cf. delicatissima and 91.2% for Pseudo-nitzschia cf. calliantha. Compared to manual image analysis, the developed automatic method significantly increases the number of samples that can be processed.</description><subject>Accuracy</subject><subject>Adriatic Sea</subject><subject>Aquatic ecology</subject><subject>Automation</subject><subject>Carbon</subject><subject>Carbon cycle (Biogeochemistry)</subject><subject>cell structures</subject><subject>Classification</subject><subject>computer vision</subject><subject>data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>euphotic zone</subject><subject>Identification</subject><subject>image analysis</subject><subject>Machine vision</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>nutrient uptake</subject><subject>phytoplankton</subject><subject>Plankton</subject><subject>Pseudo-nitzschia</subject><subject>Seawater</subject><subject>species</subject><subject>water</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVFr3DAMx0PZoEd7D_0Ghr6sD7nKUZyLH49jawtXNthtr8Fx5J5Lzs7shNJ9-jpcKWMSSEL6_QVCWXbFYYUo4faFV1wUvIKzbFHAGvOyLPmnf-rzbBnjMyQrZV0LWGSHrT8O00iB_bbResf2pA_O_pkoMuMDe_RhOPjeP1mterZxqn-NNjLlOvbQkRutSYNxFnrD9i-e_Yg0dT53dvwb9cEq9nMgbSleZp-N6iMt3_NF9uvb1_32Pt99v3vYbna5xqIc804S6JZDRQAaNa5bKYwSmmOhus4UskXZIW9Nq0nUbYWV4YggKqi5LBHxIvty2jsEP18xNkcbNfW9cuSn2CAXuE6BQ0Kv_0Of_RTSiYkCCbJIoEzU6kQ9qZ4a64wfg9LJOzpa7R0Zm_qbGkrBRSXntTcngQ4-xkCmGYI9qvDacGjmPzUff8I35qaEUQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Marzidovšek, Martin</creator><creator>Mozetič, Patricija</creator><creator>Francé, Janja</creator><creator>Podpečan, Vid</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7498-9224</orcidid><orcidid>https://orcid.org/0000-0001-8638-1884</orcidid><orcidid>https://orcid.org/0000-0002-4668-4511</orcidid></search><sort><creationdate>20240801</creationdate><title>Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species</title><author>Marzidovšek, Martin ; Mozetič, Patricija ; Francé, Janja ; Podpečan, Vid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-d9e0cb106e00c3c37b95fa5c132addf29b39d31bfbce58b636f13305608194333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adriatic Sea</topic><topic>Aquatic ecology</topic><topic>Automation</topic><topic>Carbon</topic><topic>Carbon cycle (Biogeochemistry)</topic><topic>cell structures</topic><topic>Classification</topic><topic>computer vision</topic><topic>data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>euphotic zone</topic><topic>Identification</topic><topic>image analysis</topic><topic>Machine vision</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>nutrient uptake</topic><topic>phytoplankton</topic><topic>Plankton</topic><topic>Pseudo-nitzschia</topic><topic>Seawater</topic><topic>species</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzidovšek, Martin</creatorcontrib><creatorcontrib>Mozetič, Patricija</creatorcontrib><creatorcontrib>Francé, Janja</creatorcontrib><creatorcontrib>Podpečan, Vid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzidovšek, Martin</au><au>Mozetič, Patricija</au><au>Francé, Janja</au><au>Podpečan, Vid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species</atitle><jtitle>Water (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>2160</spage><pages>2160-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The diversity of phytoplankton influences the structure of and processes that occur in marine ecosystems, with size and other morphological traits being crucial for nutrient uptake and retention in the euphotic zone. Our research introduces a machine learning method that can facilitate the analysis of phytoplankton functional traits from image data. We use computer vision to identify and quantify phytoplankton species and estimate size-related traits based on cell morphology. The study uses transfer learning, where generic, pre-trained YOLOv8 computer vision models are fine-tuned with microscope image data from the Adriatic Sea. The study shows that, for this task, it is possible to effectively fine-tune models trained on out-of-domain images and that this is possible with a small training dataset. The results show high accuracy in detecting and segmenting phytoplankton cells from the microscopic images of the two selected phytoplankton taxa. For detection, the model achieves AP scores of 88.1% for Pseudo-nitzschia cf. delicatissima and 90.9% for Pseudo-nitzschia cf. calliantha, while for segmentation, the scores are 88.4% for Pseudo-nitzschia cf. delicatissima and 91.2% for Pseudo-nitzschia cf. calliantha. Compared to manual image analysis, the developed automatic method significantly increases the number of samples that can be processed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16152160</doi><orcidid>https://orcid.org/0000-0002-7498-9224</orcidid><orcidid>https://orcid.org/0000-0001-8638-1884</orcidid><orcidid>https://orcid.org/0000-0002-4668-4511</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2024-08, Vol.16 (15), p.2160 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153731510 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Adriatic Sea Aquatic ecology Automation Carbon Carbon cycle (Biogeochemistry) cell structures Classification computer vision data collection Datasets Deep learning euphotic zone Identification image analysis Machine vision Methods Microorganisms Microscopy Morphology Neural networks nutrient uptake phytoplankton Plankton Pseudo-nitzschia Seawater species water |
title | Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Vision%20Techniques%20for%20Morphological%20Analysis%20and%20Identification%20of%20Two%20Pseudo-nitzschia%20Species&rft.jtitle=Water%20(Basel)&rft.au=Marzidov%C5%A1ek,%20Martin&rft.date=2024-08-01&rft.volume=16&rft.issue=15&rft.spage=2160&rft.pages=2160-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16152160&rft_dat=%3Cgale_proqu%3EA804515690%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090923739&rft_id=info:pmid/&rft_galeid=A804515690&rfr_iscdi=true |