Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species

The diversity of phytoplankton influences the structure of and processes that occur in marine ecosystems, with size and other morphological traits being crucial for nutrient uptake and retention in the euphotic zone. Our research introduces a machine learning method that can facilitate the analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2024-08, Vol.16 (15), p.2160
Hauptverfasser: Marzidovšek, Martin, Mozetič, Patricija, Francé, Janja, Podpečan, Vid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 2160
container_title Water (Basel)
container_volume 16
creator Marzidovšek, Martin
Mozetič, Patricija
Francé, Janja
Podpečan, Vid
description The diversity of phytoplankton influences the structure of and processes that occur in marine ecosystems, with size and other morphological traits being crucial for nutrient uptake and retention in the euphotic zone. Our research introduces a machine learning method that can facilitate the analysis of phytoplankton functional traits from image data. We use computer vision to identify and quantify phytoplankton species and estimate size-related traits based on cell morphology. The study uses transfer learning, where generic, pre-trained YOLOv8 computer vision models are fine-tuned with microscope image data from the Adriatic Sea. The study shows that, for this task, it is possible to effectively fine-tune models trained on out-of-domain images and that this is possible with a small training dataset. The results show high accuracy in detecting and segmenting phytoplankton cells from the microscopic images of the two selected phytoplankton taxa. For detection, the model achieves AP scores of 88.1% for Pseudo-nitzschia cf. delicatissima and 90.9% for Pseudo-nitzschia cf. calliantha, while for segmentation, the scores are 88.4% for Pseudo-nitzschia cf. delicatissima and 91.2% for Pseudo-nitzschia cf. calliantha. Compared to manual image analysis, the developed automatic method significantly increases the number of samples that can be processed.
doi_str_mv 10.3390/w16152160
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153731510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804515690</galeid><sourcerecordid>A804515690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-d9e0cb106e00c3c37b95fa5c132addf29b39d31bfbce58b636f13305608194333</originalsourceid><addsrcrecordid>eNpdkVFr3DAMx0PZoEd7D_0Ghr6sD7nKUZyLH49jawtXNthtr8Fx5J5Lzs7shNJ9-jpcKWMSSEL6_QVCWXbFYYUo4faFV1wUvIKzbFHAGvOyLPmnf-rzbBnjMyQrZV0LWGSHrT8O00iB_bbResf2pA_O_pkoMuMDe_RhOPjeP1mterZxqn-NNjLlOvbQkRutSYNxFnrD9i-e_Yg0dT53dvwb9cEq9nMgbSleZp-N6iMt3_NF9uvb1_32Pt99v3vYbna5xqIc804S6JZDRQAaNa5bKYwSmmOhus4UskXZIW9Nq0nUbYWV4YggKqi5LBHxIvty2jsEP18xNkcbNfW9cuSn2CAXuE6BQ0Kv_0Of_RTSiYkCCbJIoEzU6kQ9qZ4a64wfg9LJOzpa7R0Zm_qbGkrBRSXntTcngQ4-xkCmGYI9qvDacGjmPzUff8I35qaEUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090923739</pqid></control><display><type>article</type><title>Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Marzidovšek, Martin ; Mozetič, Patricija ; Francé, Janja ; Podpečan, Vid</creator><creatorcontrib>Marzidovšek, Martin ; Mozetič, Patricija ; Francé, Janja ; Podpečan, Vid</creatorcontrib><description>The diversity of phytoplankton influences the structure of and processes that occur in marine ecosystems, with size and other morphological traits being crucial for nutrient uptake and retention in the euphotic zone. Our research introduces a machine learning method that can facilitate the analysis of phytoplankton functional traits from image data. We use computer vision to identify and quantify phytoplankton species and estimate size-related traits based on cell morphology. The study uses transfer learning, where generic, pre-trained YOLOv8 computer vision models are fine-tuned with microscope image data from the Adriatic Sea. The study shows that, for this task, it is possible to effectively fine-tune models trained on out-of-domain images and that this is possible with a small training dataset. The results show high accuracy in detecting and segmenting phytoplankton cells from the microscopic images of the two selected phytoplankton taxa. For detection, the model achieves AP scores of 88.1% for Pseudo-nitzschia cf. delicatissima and 90.9% for Pseudo-nitzschia cf. calliantha, while for segmentation, the scores are 88.4% for Pseudo-nitzschia cf. delicatissima and 91.2% for Pseudo-nitzschia cf. calliantha. Compared to manual image analysis, the developed automatic method significantly increases the number of samples that can be processed.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16152160</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adriatic Sea ; Aquatic ecology ; Automation ; Carbon ; Carbon cycle (Biogeochemistry) ; cell structures ; Classification ; computer vision ; data collection ; Datasets ; Deep learning ; euphotic zone ; Identification ; image analysis ; Machine vision ; Methods ; Microorganisms ; Microscopy ; Morphology ; Neural networks ; nutrient uptake ; phytoplankton ; Plankton ; Pseudo-nitzschia ; Seawater ; species ; water</subject><ispartof>Water (Basel), 2024-08, Vol.16 (15), p.2160</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-d9e0cb106e00c3c37b95fa5c132addf29b39d31bfbce58b636f13305608194333</cites><orcidid>0000-0002-7498-9224 ; 0000-0001-8638-1884 ; 0000-0002-4668-4511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Marzidovšek, Martin</creatorcontrib><creatorcontrib>Mozetič, Patricija</creatorcontrib><creatorcontrib>Francé, Janja</creatorcontrib><creatorcontrib>Podpečan, Vid</creatorcontrib><title>Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species</title><title>Water (Basel)</title><description>The diversity of phytoplankton influences the structure of and processes that occur in marine ecosystems, with size and other morphological traits being crucial for nutrient uptake and retention in the euphotic zone. Our research introduces a machine learning method that can facilitate the analysis of phytoplankton functional traits from image data. We use computer vision to identify and quantify phytoplankton species and estimate size-related traits based on cell morphology. The study uses transfer learning, where generic, pre-trained YOLOv8 computer vision models are fine-tuned with microscope image data from the Adriatic Sea. The study shows that, for this task, it is possible to effectively fine-tune models trained on out-of-domain images and that this is possible with a small training dataset. The results show high accuracy in detecting and segmenting phytoplankton cells from the microscopic images of the two selected phytoplankton taxa. For detection, the model achieves AP scores of 88.1% for Pseudo-nitzschia cf. delicatissima and 90.9% for Pseudo-nitzschia cf. calliantha, while for segmentation, the scores are 88.4% for Pseudo-nitzschia cf. delicatissima and 91.2% for Pseudo-nitzschia cf. calliantha. Compared to manual image analysis, the developed automatic method significantly increases the number of samples that can be processed.</description><subject>Accuracy</subject><subject>Adriatic Sea</subject><subject>Aquatic ecology</subject><subject>Automation</subject><subject>Carbon</subject><subject>Carbon cycle (Biogeochemistry)</subject><subject>cell structures</subject><subject>Classification</subject><subject>computer vision</subject><subject>data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>euphotic zone</subject><subject>Identification</subject><subject>image analysis</subject><subject>Machine vision</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>nutrient uptake</subject><subject>phytoplankton</subject><subject>Plankton</subject><subject>Pseudo-nitzschia</subject><subject>Seawater</subject><subject>species</subject><subject>water</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVFr3DAMx0PZoEd7D_0Ghr6sD7nKUZyLH49jawtXNthtr8Fx5J5Lzs7shNJ9-jpcKWMSSEL6_QVCWXbFYYUo4faFV1wUvIKzbFHAGvOyLPmnf-rzbBnjMyQrZV0LWGSHrT8O00iB_bbResf2pA_O_pkoMuMDe_RhOPjeP1mterZxqn-NNjLlOvbQkRutSYNxFnrD9i-e_Yg0dT53dvwb9cEq9nMgbSleZp-N6iMt3_NF9uvb1_32Pt99v3vYbna5xqIc804S6JZDRQAaNa5bKYwSmmOhus4UskXZIW9Nq0nUbYWV4YggKqi5LBHxIvty2jsEP18xNkcbNfW9cuSn2CAXuE6BQ0Kv_0Of_RTSiYkCCbJIoEzU6kQ9qZ4a64wfg9LJOzpa7R0Zm_qbGkrBRSXntTcngQ4-xkCmGYI9qvDacGjmPzUff8I35qaEUQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Marzidovšek, Martin</creator><creator>Mozetič, Patricija</creator><creator>Francé, Janja</creator><creator>Podpečan, Vid</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7498-9224</orcidid><orcidid>https://orcid.org/0000-0001-8638-1884</orcidid><orcidid>https://orcid.org/0000-0002-4668-4511</orcidid></search><sort><creationdate>20240801</creationdate><title>Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species</title><author>Marzidovšek, Martin ; Mozetič, Patricija ; Francé, Janja ; Podpečan, Vid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-d9e0cb106e00c3c37b95fa5c132addf29b39d31bfbce58b636f13305608194333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adriatic Sea</topic><topic>Aquatic ecology</topic><topic>Automation</topic><topic>Carbon</topic><topic>Carbon cycle (Biogeochemistry)</topic><topic>cell structures</topic><topic>Classification</topic><topic>computer vision</topic><topic>data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>euphotic zone</topic><topic>Identification</topic><topic>image analysis</topic><topic>Machine vision</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>nutrient uptake</topic><topic>phytoplankton</topic><topic>Plankton</topic><topic>Pseudo-nitzschia</topic><topic>Seawater</topic><topic>species</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzidovšek, Martin</creatorcontrib><creatorcontrib>Mozetič, Patricija</creatorcontrib><creatorcontrib>Francé, Janja</creatorcontrib><creatorcontrib>Podpečan, Vid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzidovšek, Martin</au><au>Mozetič, Patricija</au><au>Francé, Janja</au><au>Podpečan, Vid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species</atitle><jtitle>Water (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>2160</spage><pages>2160-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The diversity of phytoplankton influences the structure of and processes that occur in marine ecosystems, with size and other morphological traits being crucial for nutrient uptake and retention in the euphotic zone. Our research introduces a machine learning method that can facilitate the analysis of phytoplankton functional traits from image data. We use computer vision to identify and quantify phytoplankton species and estimate size-related traits based on cell morphology. The study uses transfer learning, where generic, pre-trained YOLOv8 computer vision models are fine-tuned with microscope image data from the Adriatic Sea. The study shows that, for this task, it is possible to effectively fine-tune models trained on out-of-domain images and that this is possible with a small training dataset. The results show high accuracy in detecting and segmenting phytoplankton cells from the microscopic images of the two selected phytoplankton taxa. For detection, the model achieves AP scores of 88.1% for Pseudo-nitzschia cf. delicatissima and 90.9% for Pseudo-nitzschia cf. calliantha, while for segmentation, the scores are 88.4% for Pseudo-nitzschia cf. delicatissima and 91.2% for Pseudo-nitzschia cf. calliantha. Compared to manual image analysis, the developed automatic method significantly increases the number of samples that can be processed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16152160</doi><orcidid>https://orcid.org/0000-0002-7498-9224</orcidid><orcidid>https://orcid.org/0000-0001-8638-1884</orcidid><orcidid>https://orcid.org/0000-0002-4668-4511</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2024-08, Vol.16 (15), p.2160
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_miscellaneous_3153731510
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Adriatic Sea
Aquatic ecology
Automation
Carbon
Carbon cycle (Biogeochemistry)
cell structures
Classification
computer vision
data collection
Datasets
Deep learning
euphotic zone
Identification
image analysis
Machine vision
Methods
Microorganisms
Microscopy
Morphology
Neural networks
nutrient uptake
phytoplankton
Plankton
Pseudo-nitzschia
Seawater
species
water
title Computer Vision Techniques for Morphological Analysis and Identification of Two Pseudo-nitzschia Species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Vision%20Techniques%20for%20Morphological%20Analysis%20and%20Identification%20of%20Two%20Pseudo-nitzschia%20Species&rft.jtitle=Water%20(Basel)&rft.au=Marzidov%C5%A1ek,%20Martin&rft.date=2024-08-01&rft.volume=16&rft.issue=15&rft.spage=2160&rft.pages=2160-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16152160&rft_dat=%3Cgale_proqu%3EA804515690%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090923739&rft_id=info:pmid/&rft_galeid=A804515690&rfr_iscdi=true