Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes

The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2024-07, Vol.72 (30), p.16674-16686
Hauptverfasser: Wang, Jianling, Liu, Weitao, Zeb, Aurang, Wang, Qi, Mo, Fan, Shi, Ruiying, Sun, Yuebin, Wang, Fayuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16686
container_issue 30
container_start_page 16674
container_title Journal of agricultural and food chemistry
container_volume 72
creator Wang, Jianling
Liu, Weitao
Zeb, Aurang
Wang, Qi
Mo, Fan
Shi, Ruiying
Sun, Yuebin
Wang, Fayuan
description The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant–soil system.
doi_str_mv 10.1021/acs.jafc.4c04206
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153719128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153719128</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-8550d06ecadc0476bb6af11400f9e1c9c19c2197be274dd8ef75b82f0178c0413</originalsourceid><addsrcrecordid>eNqFkUlPwzAQRi0EgrLcOSEfOZAy4zTbEcoqsQnKOXKcMTVK42CnSPDrcWnhhjhZlt_3yTOPsX2EIYLAY6n88FVqNRwpGAlI19gAEwFRgpivswEEJsqTFLfYtvevAJAnGWyyrbgILwLiAetPja3pxclaVg3xW6Oc7Rrpe6OiM2feqeXjqWxfiJuWP1nT8O6Kn2hNqvfh_lGRbPnj1Hxa303JrRoqIxt-xydOtl5bN5O9sS1_cFaR9-R32YaWjae91bnDni_OJ-Or6Ob-8np8chNJkYg-_DyBGlJSsg7jZWlVpVIjjgB0QagKhYUSWGQViWxU1znpLKlyoQGzPAQw3mGHy97O2bc5-b6cGa-oaWRLdu7LGJM4wwJF_j8KuYihwBQCCks0DOq9I112zsyk-ygRyoWWMmgpF1rKlZYQOVi1z6sZ1b-BHw8BOFoC31E7d23Yy999X71vmU4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082309160</pqid></control><display><type>article</type><title>Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes</title><source>American Chemical Society Journals</source><creator>Wang, Jianling ; Liu, Weitao ; Zeb, Aurang ; Wang, Qi ; Mo, Fan ; Shi, Ruiying ; Sun, Yuebin ; Wang, Fayuan</creator><creatorcontrib>Wang, Jianling ; Liu, Weitao ; Zeb, Aurang ; Wang, Qi ; Mo, Fan ; Shi, Ruiying ; Sun, Yuebin ; Wang, Fayuan</creatorcontrib><description>The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant–soil system.</description><identifier>ISSN: 0021-8561</identifier><identifier>ISSN: 1520-5118</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.4c04206</identifier><identifier>PMID: 39021203</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agricultural and Environmental Chemistry ; ammonification ; biodegradability ; community structure ; denitrification ; ecological function ; food chemistry ; Glycine max ; metabolism ; microbial communities ; microbial nitrogen ; microplastics ; nutrient uptake ; organic carbon ; polybutylene succinate ; polyethylene ; rhizosphere ; soil pH ; soybeans</subject><ispartof>Journal of agricultural and food chemistry, 2024-07, Vol.72 (30), p.16674-16686</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a252t-8550d06ecadc0476bb6af11400f9e1c9c19c2197be274dd8ef75b82f0178c0413</cites><orcidid>0000-0003-1352-0243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.4c04206$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.4c04206$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39021203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jianling</creatorcontrib><creatorcontrib>Liu, Weitao</creatorcontrib><creatorcontrib>Zeb, Aurang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Shi, Ruiying</creatorcontrib><creatorcontrib>Sun, Yuebin</creatorcontrib><creatorcontrib>Wang, Fayuan</creatorcontrib><title>Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant–soil system.</description><subject>Agricultural and Environmental Chemistry</subject><subject>ammonification</subject><subject>biodegradability</subject><subject>community structure</subject><subject>denitrification</subject><subject>ecological function</subject><subject>food chemistry</subject><subject>Glycine max</subject><subject>metabolism</subject><subject>microbial communities</subject><subject>microbial nitrogen</subject><subject>microplastics</subject><subject>nutrient uptake</subject><subject>organic carbon</subject><subject>polybutylene succinate</subject><subject>polyethylene</subject><subject>rhizosphere</subject><subject>soil pH</subject><subject>soybeans</subject><issn>0021-8561</issn><issn>1520-5118</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUlPwzAQRi0EgrLcOSEfOZAy4zTbEcoqsQnKOXKcMTVK42CnSPDrcWnhhjhZlt_3yTOPsX2EIYLAY6n88FVqNRwpGAlI19gAEwFRgpivswEEJsqTFLfYtvevAJAnGWyyrbgILwLiAetPja3pxclaVg3xW6Oc7Rrpe6OiM2feqeXjqWxfiJuWP1nT8O6Kn2hNqvfh_lGRbPnj1Hxa303JrRoqIxt-xydOtl5bN5O9sS1_cFaR9-R32YaWjae91bnDni_OJ-Or6Ob-8np8chNJkYg-_DyBGlJSsg7jZWlVpVIjjgB0QagKhYUSWGQViWxU1znpLKlyoQGzPAQw3mGHy97O2bc5-b6cGa-oaWRLdu7LGJM4wwJF_j8KuYihwBQCCks0DOq9I112zsyk-ygRyoWWMmgpF1rKlZYQOVi1z6sZ1b-BHw8BOFoC31E7d23Yy999X71vmU4</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Wang, Jianling</creator><creator>Liu, Weitao</creator><creator>Zeb, Aurang</creator><creator>Wang, Qi</creator><creator>Mo, Fan</creator><creator>Shi, Ruiying</creator><creator>Sun, Yuebin</creator><creator>Wang, Fayuan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1352-0243</orcidid></search><sort><creationdate>20240731</creationdate><title>Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes</title><author>Wang, Jianling ; Liu, Weitao ; Zeb, Aurang ; Wang, Qi ; Mo, Fan ; Shi, Ruiying ; Sun, Yuebin ; Wang, Fayuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-8550d06ecadc0476bb6af11400f9e1c9c19c2197be274dd8ef75b82f0178c0413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural and Environmental Chemistry</topic><topic>ammonification</topic><topic>biodegradability</topic><topic>community structure</topic><topic>denitrification</topic><topic>ecological function</topic><topic>food chemistry</topic><topic>Glycine max</topic><topic>metabolism</topic><topic>microbial communities</topic><topic>microbial nitrogen</topic><topic>microplastics</topic><topic>nutrient uptake</topic><topic>organic carbon</topic><topic>polybutylene succinate</topic><topic>polyethylene</topic><topic>rhizosphere</topic><topic>soil pH</topic><topic>soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianling</creatorcontrib><creatorcontrib>Liu, Weitao</creatorcontrib><creatorcontrib>Zeb, Aurang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Shi, Ruiying</creatorcontrib><creatorcontrib>Sun, Yuebin</creatorcontrib><creatorcontrib>Wang, Fayuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianling</au><au>Liu, Weitao</au><au>Zeb, Aurang</au><au>Wang, Qi</au><au>Mo, Fan</au><au>Shi, Ruiying</au><au>Sun, Yuebin</au><au>Wang, Fayuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2024-07-31</date><risdate>2024</risdate><volume>72</volume><issue>30</issue><spage>16674</spage><epage>16686</epage><pages>16674-16686</pages><issn>0021-8561</issn><issn>1520-5118</issn><eissn>1520-5118</eissn><abstract>The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant–soil system.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39021203</pmid><doi>10.1021/acs.jafc.4c04206</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1352-0243</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2024-07, Vol.72 (30), p.16674-16686
issn 0021-8561
1520-5118
1520-5118
language eng
recordid cdi_proquest_miscellaneous_3153719128
source American Chemical Society Journals
subjects Agricultural and Environmental Chemistry
ammonification
biodegradability
community structure
denitrification
ecological function
food chemistry
Glycine max
metabolism
microbial communities
microbial nitrogen
microplastics
nutrient uptake
organic carbon
polybutylene succinate
polyethylene
rhizosphere
soil pH
soybeans
title Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20Microplastic-Driven%20Change%20in%20Soil%20pH%20Affects%20Soybean%20Rhizosphere%20Microbial%20N%20Transformation%20Processes&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Wang,%20Jianling&rft.date=2024-07-31&rft.volume=72&rft.issue=30&rft.spage=16674&rft.epage=16686&rft.pages=16674-16686&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.4c04206&rft_dat=%3Cproquest_cross%3E3153719128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082309160&rft_id=info:pmid/39021203&rfr_iscdi=true