Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes
The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2024-07, Vol.72 (30), p.16674-16686 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16686 |
---|---|
container_issue | 30 |
container_start_page | 16674 |
container_title | Journal of agricultural and food chemistry |
container_volume | 72 |
creator | Wang, Jianling Liu, Weitao Zeb, Aurang Wang, Qi Mo, Fan Shi, Ruiying Sun, Yuebin Wang, Fayuan |
description | The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant–soil system. |
doi_str_mv | 10.1021/acs.jafc.4c04206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153719128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153719128</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-8550d06ecadc0476bb6af11400f9e1c9c19c2197be274dd8ef75b82f0178c0413</originalsourceid><addsrcrecordid>eNqFkUlPwzAQRi0EgrLcOSEfOZAy4zTbEcoqsQnKOXKcMTVK42CnSPDrcWnhhjhZlt_3yTOPsX2EIYLAY6n88FVqNRwpGAlI19gAEwFRgpivswEEJsqTFLfYtvevAJAnGWyyrbgILwLiAetPja3pxclaVg3xW6Oc7Rrpe6OiM2feqeXjqWxfiJuWP1nT8O6Kn2hNqvfh_lGRbPnj1Hxa303JrRoqIxt-xydOtl5bN5O9sS1_cFaR9-R32YaWjae91bnDni_OJ-Or6Ob-8np8chNJkYg-_DyBGlJSsg7jZWlVpVIjjgB0QagKhYUSWGQViWxU1znpLKlyoQGzPAQw3mGHy97O2bc5-b6cGa-oaWRLdu7LGJM4wwJF_j8KuYihwBQCCks0DOq9I112zsyk-ygRyoWWMmgpF1rKlZYQOVi1z6sZ1b-BHw8BOFoC31E7d23Yy999X71vmU4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082309160</pqid></control><display><type>article</type><title>Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes</title><source>American Chemical Society Journals</source><creator>Wang, Jianling ; Liu, Weitao ; Zeb, Aurang ; Wang, Qi ; Mo, Fan ; Shi, Ruiying ; Sun, Yuebin ; Wang, Fayuan</creator><creatorcontrib>Wang, Jianling ; Liu, Weitao ; Zeb, Aurang ; Wang, Qi ; Mo, Fan ; Shi, Ruiying ; Sun, Yuebin ; Wang, Fayuan</creatorcontrib><description>The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant–soil system.</description><identifier>ISSN: 0021-8561</identifier><identifier>ISSN: 1520-5118</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.4c04206</identifier><identifier>PMID: 39021203</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agricultural and Environmental Chemistry ; ammonification ; biodegradability ; community structure ; denitrification ; ecological function ; food chemistry ; Glycine max ; metabolism ; microbial communities ; microbial nitrogen ; microplastics ; nutrient uptake ; organic carbon ; polybutylene succinate ; polyethylene ; rhizosphere ; soil pH ; soybeans</subject><ispartof>Journal of agricultural and food chemistry, 2024-07, Vol.72 (30), p.16674-16686</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a252t-8550d06ecadc0476bb6af11400f9e1c9c19c2197be274dd8ef75b82f0178c0413</cites><orcidid>0000-0003-1352-0243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.4c04206$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.4c04206$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39021203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jianling</creatorcontrib><creatorcontrib>Liu, Weitao</creatorcontrib><creatorcontrib>Zeb, Aurang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Shi, Ruiying</creatorcontrib><creatorcontrib>Sun, Yuebin</creatorcontrib><creatorcontrib>Wang, Fayuan</creatorcontrib><title>Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant–soil system.</description><subject>Agricultural and Environmental Chemistry</subject><subject>ammonification</subject><subject>biodegradability</subject><subject>community structure</subject><subject>denitrification</subject><subject>ecological function</subject><subject>food chemistry</subject><subject>Glycine max</subject><subject>metabolism</subject><subject>microbial communities</subject><subject>microbial nitrogen</subject><subject>microplastics</subject><subject>nutrient uptake</subject><subject>organic carbon</subject><subject>polybutylene succinate</subject><subject>polyethylene</subject><subject>rhizosphere</subject><subject>soil pH</subject><subject>soybeans</subject><issn>0021-8561</issn><issn>1520-5118</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUlPwzAQRi0EgrLcOSEfOZAy4zTbEcoqsQnKOXKcMTVK42CnSPDrcWnhhjhZlt_3yTOPsX2EIYLAY6n88FVqNRwpGAlI19gAEwFRgpivswEEJsqTFLfYtvevAJAnGWyyrbgILwLiAetPja3pxclaVg3xW6Oc7Rrpe6OiM2feqeXjqWxfiJuWP1nT8O6Kn2hNqvfh_lGRbPnj1Hxa303JrRoqIxt-xydOtl5bN5O9sS1_cFaR9-R32YaWjae91bnDni_OJ-Or6Ob-8np8chNJkYg-_DyBGlJSsg7jZWlVpVIjjgB0QagKhYUSWGQViWxU1znpLKlyoQGzPAQw3mGHy97O2bc5-b6cGa-oaWRLdu7LGJM4wwJF_j8KuYihwBQCCks0DOq9I112zsyk-ygRyoWWMmgpF1rKlZYQOVi1z6sZ1b-BHw8BOFoC31E7d23Yy999X71vmU4</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Wang, Jianling</creator><creator>Liu, Weitao</creator><creator>Zeb, Aurang</creator><creator>Wang, Qi</creator><creator>Mo, Fan</creator><creator>Shi, Ruiying</creator><creator>Sun, Yuebin</creator><creator>Wang, Fayuan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1352-0243</orcidid></search><sort><creationdate>20240731</creationdate><title>Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes</title><author>Wang, Jianling ; Liu, Weitao ; Zeb, Aurang ; Wang, Qi ; Mo, Fan ; Shi, Ruiying ; Sun, Yuebin ; Wang, Fayuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-8550d06ecadc0476bb6af11400f9e1c9c19c2197be274dd8ef75b82f0178c0413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural and Environmental Chemistry</topic><topic>ammonification</topic><topic>biodegradability</topic><topic>community structure</topic><topic>denitrification</topic><topic>ecological function</topic><topic>food chemistry</topic><topic>Glycine max</topic><topic>metabolism</topic><topic>microbial communities</topic><topic>microbial nitrogen</topic><topic>microplastics</topic><topic>nutrient uptake</topic><topic>organic carbon</topic><topic>polybutylene succinate</topic><topic>polyethylene</topic><topic>rhizosphere</topic><topic>soil pH</topic><topic>soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianling</creatorcontrib><creatorcontrib>Liu, Weitao</creatorcontrib><creatorcontrib>Zeb, Aurang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Shi, Ruiying</creatorcontrib><creatorcontrib>Sun, Yuebin</creatorcontrib><creatorcontrib>Wang, Fayuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianling</au><au>Liu, Weitao</au><au>Zeb, Aurang</au><au>Wang, Qi</au><au>Mo, Fan</au><au>Shi, Ruiying</au><au>Sun, Yuebin</au><au>Wang, Fayuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2024-07-31</date><risdate>2024</risdate><volume>72</volume><issue>30</issue><spage>16674</spage><epage>16686</epage><pages>16674-16686</pages><issn>0021-8561</issn><issn>1520-5118</issn><eissn>1520-5118</eissn><abstract>The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant–soil system.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39021203</pmid><doi>10.1021/acs.jafc.4c04206</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1352-0243</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8561 |
ispartof | Journal of agricultural and food chemistry, 2024-07, Vol.72 (30), p.16674-16686 |
issn | 0021-8561 1520-5118 1520-5118 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153719128 |
source | American Chemical Society Journals |
subjects | Agricultural and Environmental Chemistry ammonification biodegradability community structure denitrification ecological function food chemistry Glycine max metabolism microbial communities microbial nitrogen microplastics nutrient uptake organic carbon polybutylene succinate polyethylene rhizosphere soil pH soybeans |
title | Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20Microplastic-Driven%20Change%20in%20Soil%20pH%20Affects%20Soybean%20Rhizosphere%20Microbial%20N%20Transformation%20Processes&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Wang,%20Jianling&rft.date=2024-07-31&rft.volume=72&rft.issue=30&rft.spage=16674&rft.epage=16686&rft.pages=16674-16686&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.4c04206&rft_dat=%3Cproquest_cross%3E3153719128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082309160&rft_id=info:pmid/39021203&rfr_iscdi=true |