Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA

Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-08, Vol.16 (32), p.43016-43025
Hauptverfasser: Furuki, Tomohiro, Sakuta, Hiroki, Yanagisawa, Naoya, Tabuchi, Shingo, Kamo, Akari, Shimamoto, Daisuke S., Yanagisawa, Miho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43025
container_issue 32
container_start_page 43016
container_title ACS applied materials & interfaces
container_volume 16
creator Furuki, Tomohiro
Sakuta, Hiroki
Yanagisawa, Naoya
Tabuchi, Shingo
Kamo, Akari
Shimamoto, Daisuke S.
Yanagisawa, Miho
description Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly­(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil–globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet’s dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet’s central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.
doi_str_mv 10.1021/acsami.4c09362
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153717581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087352190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-818cedec295febc90dd2cb184f55e8be3748fb7d0c2339d104d00c153f006a83</originalsourceid><addsrcrecordid>eNqFkbtOwzAUhi0EoqWwMiKPCKnFtzTOWCWlVCoXie6R45wUV2lc4gSVjXfgDXkSDC3dEJOPfL7_k-wfoXNKBpQweq20UyszEJpEfMgOUJdGQvQlC9jhfhaig06cWxIy5IwEx6jDIyJlKEgXvd6pWlULWxmc1HZdQuOwLXACm8bfY1Phx_EEP9mybYytsKpyPPXInW1MCTh-9lnASQu4sTi2pvx8_5iUNmv9cu4FzvzEvDG2sDGuMdUCJ_ejU3RUqNLB2e7sofnNeB7f9mcPk2k8mvUVE7LpSyo15KBZFBSQ6YjkOdMZlaIIApAZ8FDIIgtzohnnUU6JyAnRNOCFf6uSvIcut9p1bV9acE26Mk5DWaoKbOtS7tGQhoGk_6NEhjxgNCIeHWxRXVvnaijSdW1Wqn5LKUm_W0m3raS7VnzgYudusxXke_y3Bg9cbQEfTJe2rSv_KX_ZvgDc25fR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087352190</pqid></control><display><type>article</type><title>Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA</title><source>ACS Publications</source><creator>Furuki, Tomohiro ; Sakuta, Hiroki ; Yanagisawa, Naoya ; Tabuchi, Shingo ; Kamo, Akari ; Shimamoto, Daisuke S. ; Yanagisawa, Miho</creator><creatorcontrib>Furuki, Tomohiro ; Sakuta, Hiroki ; Yanagisawa, Naoya ; Tabuchi, Shingo ; Kamo, Akari ; Shimamoto, Daisuke S. ; Yanagisawa, Miho</creatorcontrib><description>Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly­(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil–globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet’s dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet’s central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c09362</identifier><identifier>PMID: 39088740</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>active transport ; convection ; dextran ; DNA ; droplets ; separation ; Surfaces, Interfaces, and Applications ; viscosity</subject><ispartof>ACS applied materials &amp; interfaces, 2024-08, Vol.16 (32), p.43016-43025</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-818cedec295febc90dd2cb184f55e8be3748fb7d0c2339d104d00c153f006a83</cites><orcidid>0000-0001-8473-6370 ; 0000-0001-5748-4024 ; 0000-0001-7872-8286 ; 0009-0007-1026-0577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c09362$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c09362$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39088740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furuki, Tomohiro</creatorcontrib><creatorcontrib>Sakuta, Hiroki</creatorcontrib><creatorcontrib>Yanagisawa, Naoya</creatorcontrib><creatorcontrib>Tabuchi, Shingo</creatorcontrib><creatorcontrib>Kamo, Akari</creatorcontrib><creatorcontrib>Shimamoto, Daisuke S.</creatorcontrib><creatorcontrib>Yanagisawa, Miho</creatorcontrib><title>Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly­(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil–globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet’s dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet’s central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.</description><subject>active transport</subject><subject>convection</subject><subject>dextran</subject><subject>DNA</subject><subject>droplets</subject><subject>separation</subject><subject>Surfaces, Interfaces, and Applications</subject><subject>viscosity</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOwzAUhi0EoqWwMiKPCKnFtzTOWCWlVCoXie6R45wUV2lc4gSVjXfgDXkSDC3dEJOPfL7_k-wfoXNKBpQweq20UyszEJpEfMgOUJdGQvQlC9jhfhaig06cWxIy5IwEx6jDIyJlKEgXvd6pWlULWxmc1HZdQuOwLXACm8bfY1Phx_EEP9mybYytsKpyPPXInW1MCTh-9lnASQu4sTi2pvx8_5iUNmv9cu4FzvzEvDG2sDGuMdUCJ_ejU3RUqNLB2e7sofnNeB7f9mcPk2k8mvUVE7LpSyo15KBZFBSQ6YjkOdMZlaIIApAZ8FDIIgtzohnnUU6JyAnRNOCFf6uSvIcut9p1bV9acE26Mk5DWaoKbOtS7tGQhoGk_6NEhjxgNCIeHWxRXVvnaijSdW1Wqn5LKUm_W0m3raS7VnzgYudusxXke_y3Bg9cbQEfTJe2rSv_KX_ZvgDc25fR</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Furuki, Tomohiro</creator><creator>Sakuta, Hiroki</creator><creator>Yanagisawa, Naoya</creator><creator>Tabuchi, Shingo</creator><creator>Kamo, Akari</creator><creator>Shimamoto, Daisuke S.</creator><creator>Yanagisawa, Miho</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-8473-6370</orcidid><orcidid>https://orcid.org/0000-0001-5748-4024</orcidid><orcidid>https://orcid.org/0000-0001-7872-8286</orcidid><orcidid>https://orcid.org/0009-0007-1026-0577</orcidid></search><sort><creationdate>20240814</creationdate><title>Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA</title><author>Furuki, Tomohiro ; Sakuta, Hiroki ; Yanagisawa, Naoya ; Tabuchi, Shingo ; Kamo, Akari ; Shimamoto, Daisuke S. ; Yanagisawa, Miho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-818cedec295febc90dd2cb184f55e8be3748fb7d0c2339d104d00c153f006a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active transport</topic><topic>convection</topic><topic>dextran</topic><topic>DNA</topic><topic>droplets</topic><topic>separation</topic><topic>Surfaces, Interfaces, and Applications</topic><topic>viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furuki, Tomohiro</creatorcontrib><creatorcontrib>Sakuta, Hiroki</creatorcontrib><creatorcontrib>Yanagisawa, Naoya</creatorcontrib><creatorcontrib>Tabuchi, Shingo</creatorcontrib><creatorcontrib>Kamo, Akari</creatorcontrib><creatorcontrib>Shimamoto, Daisuke S.</creatorcontrib><creatorcontrib>Yanagisawa, Miho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furuki, Tomohiro</au><au>Sakuta, Hiroki</au><au>Yanagisawa, Naoya</au><au>Tabuchi, Shingo</au><au>Kamo, Akari</au><au>Shimamoto, Daisuke S.</au><au>Yanagisawa, Miho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-08-14</date><risdate>2024</risdate><volume>16</volume><issue>32</issue><spage>43016</spage><epage>43025</epage><pages>43016-43025</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly­(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil–globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet’s dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet’s central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39088740</pmid><doi>10.1021/acsami.4c09362</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8473-6370</orcidid><orcidid>https://orcid.org/0000-0001-5748-4024</orcidid><orcidid>https://orcid.org/0000-0001-7872-8286</orcidid><orcidid>https://orcid.org/0009-0007-1026-0577</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-08, Vol.16 (32), p.43016-43025
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3153717581
source ACS Publications
subjects active transport
convection
dextran
DNA
droplets
separation
Surfaces, Interfaces, and Applications
viscosity
title Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marangoni%20Droplets%20of%20Dextran%20in%20PEG%20Solution%20and%20Its%20Motile%20Change%20Due%20to%20Coil%E2%80%93Globule%20Transition%20of%20Coexisting%20DNA&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Furuki,%20Tomohiro&rft.date=2024-08-14&rft.volume=16&rft.issue=32&rft.spage=43016&rft.epage=43025&rft.pages=43016-43025&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c09362&rft_dat=%3Cproquest_cross%3E3087352190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087352190&rft_id=info:pmid/39088740&rfr_iscdi=true