Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA
Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-08, Vol.16 (32), p.43016-43025 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43025 |
---|---|
container_issue | 32 |
container_start_page | 43016 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Furuki, Tomohiro Sakuta, Hiroki Yanagisawa, Naoya Tabuchi, Shingo Kamo, Akari Shimamoto, Daisuke S. Yanagisawa, Miho |
description | Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil–globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet’s dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet’s central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation. |
doi_str_mv | 10.1021/acsami.4c09362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153717581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087352190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-818cedec295febc90dd2cb184f55e8be3748fb7d0c2339d104d00c153f006a83</originalsourceid><addsrcrecordid>eNqFkbtOwzAUhi0EoqWwMiKPCKnFtzTOWCWlVCoXie6R45wUV2lc4gSVjXfgDXkSDC3dEJOPfL7_k-wfoXNKBpQweq20UyszEJpEfMgOUJdGQvQlC9jhfhaig06cWxIy5IwEx6jDIyJlKEgXvd6pWlULWxmc1HZdQuOwLXACm8bfY1Phx_EEP9mybYytsKpyPPXInW1MCTh-9lnASQu4sTi2pvx8_5iUNmv9cu4FzvzEvDG2sDGuMdUCJ_ejU3RUqNLB2e7sofnNeB7f9mcPk2k8mvUVE7LpSyo15KBZFBSQ6YjkOdMZlaIIApAZ8FDIIgtzohnnUU6JyAnRNOCFf6uSvIcut9p1bV9acE26Mk5DWaoKbOtS7tGQhoGk_6NEhjxgNCIeHWxRXVvnaijSdW1Wqn5LKUm_W0m3raS7VnzgYudusxXke_y3Bg9cbQEfTJe2rSv_KX_ZvgDc25fR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087352190</pqid></control><display><type>article</type><title>Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA</title><source>ACS Publications</source><creator>Furuki, Tomohiro ; Sakuta, Hiroki ; Yanagisawa, Naoya ; Tabuchi, Shingo ; Kamo, Akari ; Shimamoto, Daisuke S. ; Yanagisawa, Miho</creator><creatorcontrib>Furuki, Tomohiro ; Sakuta, Hiroki ; Yanagisawa, Naoya ; Tabuchi, Shingo ; Kamo, Akari ; Shimamoto, Daisuke S. ; Yanagisawa, Miho</creatorcontrib><description>Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil–globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet’s dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet’s central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c09362</identifier><identifier>PMID: 39088740</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>active transport ; convection ; dextran ; DNA ; droplets ; separation ; Surfaces, Interfaces, and Applications ; viscosity</subject><ispartof>ACS applied materials & interfaces, 2024-08, Vol.16 (32), p.43016-43025</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-818cedec295febc90dd2cb184f55e8be3748fb7d0c2339d104d00c153f006a83</cites><orcidid>0000-0001-8473-6370 ; 0000-0001-5748-4024 ; 0000-0001-7872-8286 ; 0009-0007-1026-0577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c09362$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c09362$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39088740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furuki, Tomohiro</creatorcontrib><creatorcontrib>Sakuta, Hiroki</creatorcontrib><creatorcontrib>Yanagisawa, Naoya</creatorcontrib><creatorcontrib>Tabuchi, Shingo</creatorcontrib><creatorcontrib>Kamo, Akari</creatorcontrib><creatorcontrib>Shimamoto, Daisuke S.</creatorcontrib><creatorcontrib>Yanagisawa, Miho</creatorcontrib><title>Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil–globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet’s dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet’s central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.</description><subject>active transport</subject><subject>convection</subject><subject>dextran</subject><subject>DNA</subject><subject>droplets</subject><subject>separation</subject><subject>Surfaces, Interfaces, and Applications</subject><subject>viscosity</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOwzAUhi0EoqWwMiKPCKnFtzTOWCWlVCoXie6R45wUV2lc4gSVjXfgDXkSDC3dEJOPfL7_k-wfoXNKBpQweq20UyszEJpEfMgOUJdGQvQlC9jhfhaig06cWxIy5IwEx6jDIyJlKEgXvd6pWlULWxmc1HZdQuOwLXACm8bfY1Phx_EEP9mybYytsKpyPPXInW1MCTh-9lnASQu4sTi2pvx8_5iUNmv9cu4FzvzEvDG2sDGuMdUCJ_ejU3RUqNLB2e7sofnNeB7f9mcPk2k8mvUVE7LpSyo15KBZFBSQ6YjkOdMZlaIIApAZ8FDIIgtzohnnUU6JyAnRNOCFf6uSvIcut9p1bV9acE26Mk5DWaoKbOtS7tGQhoGk_6NEhjxgNCIeHWxRXVvnaijSdW1Wqn5LKUm_W0m3raS7VnzgYudusxXke_y3Bg9cbQEfTJe2rSv_KX_ZvgDc25fR</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Furuki, Tomohiro</creator><creator>Sakuta, Hiroki</creator><creator>Yanagisawa, Naoya</creator><creator>Tabuchi, Shingo</creator><creator>Kamo, Akari</creator><creator>Shimamoto, Daisuke S.</creator><creator>Yanagisawa, Miho</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-8473-6370</orcidid><orcidid>https://orcid.org/0000-0001-5748-4024</orcidid><orcidid>https://orcid.org/0000-0001-7872-8286</orcidid><orcidid>https://orcid.org/0009-0007-1026-0577</orcidid></search><sort><creationdate>20240814</creationdate><title>Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA</title><author>Furuki, Tomohiro ; Sakuta, Hiroki ; Yanagisawa, Naoya ; Tabuchi, Shingo ; Kamo, Akari ; Shimamoto, Daisuke S. ; Yanagisawa, Miho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-818cedec295febc90dd2cb184f55e8be3748fb7d0c2339d104d00c153f006a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active transport</topic><topic>convection</topic><topic>dextran</topic><topic>DNA</topic><topic>droplets</topic><topic>separation</topic><topic>Surfaces, Interfaces, and Applications</topic><topic>viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furuki, Tomohiro</creatorcontrib><creatorcontrib>Sakuta, Hiroki</creatorcontrib><creatorcontrib>Yanagisawa, Naoya</creatorcontrib><creatorcontrib>Tabuchi, Shingo</creatorcontrib><creatorcontrib>Kamo, Akari</creatorcontrib><creatorcontrib>Shimamoto, Daisuke S.</creatorcontrib><creatorcontrib>Yanagisawa, Miho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furuki, Tomohiro</au><au>Sakuta, Hiroki</au><au>Yanagisawa, Naoya</au><au>Tabuchi, Shingo</au><au>Kamo, Akari</au><au>Shimamoto, Daisuke S.</au><au>Yanagisawa, Miho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-08-14</date><risdate>2024</risdate><volume>16</volume><issue>32</issue><spage>43016</spage><epage>43025</epage><pages>43016-43025</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil–globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet’s dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet’s central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39088740</pmid><doi>10.1021/acsami.4c09362</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8473-6370</orcidid><orcidid>https://orcid.org/0000-0001-5748-4024</orcidid><orcidid>https://orcid.org/0000-0001-7872-8286</orcidid><orcidid>https://orcid.org/0009-0007-1026-0577</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-08, Vol.16 (32), p.43016-43025 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153717581 |
source | ACS Publications |
subjects | active transport convection dextran DNA droplets separation Surfaces, Interfaces, and Applications viscosity |
title | Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marangoni%20Droplets%20of%20Dextran%20in%20PEG%20Solution%20and%20Its%20Motile%20Change%20Due%20to%20Coil%E2%80%93Globule%20Transition%20of%20Coexisting%20DNA&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Furuki,%20Tomohiro&rft.date=2024-08-14&rft.volume=16&rft.issue=32&rft.spage=43016&rft.epage=43025&rft.pages=43016-43025&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c09362&rft_dat=%3Cproquest_cross%3E3087352190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087352190&rft_id=info:pmid/39088740&rfr_iscdi=true |