Isolated Ni Atoms Enable Near-Unity CH4 Selectivity for Photothermal CO2 Hydrogenation
Photothermal hydrogenation of carbon dioxide (CO2) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO2 emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate react...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-07, Vol.146 (30), p.21008-21016 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21016 |
---|---|
container_issue | 30 |
container_start_page | 21008 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Raziq, Fazal Feng, Chengyang Hu, Miao Zuo, Shouwei Rahman, Mohammad Ziaur Yan, Yayu Li, Qiao-Hong Gascon, Jorge Zhang, Huabin |
description | Photothermal hydrogenation of carbon dioxide (CO2) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO2 emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate reactions during CO2 hydrogenation. We present a novel approach featuring isolated single-atom nickel (Ni) anchored onto indium oxide (In2O3) nanocrystals, serving as an effective photothermal catalyst for CO2 hydrogenation into methane (CH4) with a remarkable near-unity (∼99%) selectivity. Experiments and theoretical simulations have confirmed that isolated Ni sites on the In2O3 surface can effectively stabilize the intermediate products of the CO2 hydrogenation reaction and reduce the transition state energy barrier, thereby changing the reaction path to achieve ultrahigh selective methanation. This study provides comprehensive insights into the design of single-atom catalysts for the highly selective photothermal catalytic hydrogenation of CO2 to methane. |
doi_str_mv | 10.1021/jacs.4c05873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153716967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153716967</sourcerecordid><originalsourceid>FETCH-LOGICAL-a254t-5127caccec9e39eaeeae4066350b9050f225072d852047034e88970a3660c8e23</originalsourceid><addsrcrecordid>eNqFkE9Lw0AUxBdRsFZvfoA9ekl9-39zLKHaQmkFrdew3b7alDSr2a3Qb2-CBY_CwGNgeMz8CLlnMGLA2ePe-TiSHpQ14oIMmOKQKcb1JRkAAM-M1eKa3MS476zklg3I-yyG2iXc0EVFxykcIp00bl0jXaBrs1VTpRMtppK-Yo0-Vd-934aWvuxCCmmH7cHVtFhyOj1t2vCBjUtVaG7J1dbVEe_Od0hWT5O3YprNl8-zYjzPHFcy9eWMd96jz1Hk6LCTBK2FgnUOCracKzB8Y7sl0oCQaG1uwAmtwVvkYkgefv9-tuHriDGVhyp6rGvXYDjGUjAlDNO5Nv9HQZucSWXzv2jHs9yHY9t0G0oGZU-57CmXZ8riBw_Abgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067914589</pqid></control><display><type>article</type><title>Isolated Ni Atoms Enable Near-Unity CH4 Selectivity for Photothermal CO2 Hydrogenation</title><source>ACS Publications</source><creator>Raziq, Fazal ; Feng, Chengyang ; Hu, Miao ; Zuo, Shouwei ; Rahman, Mohammad Ziaur ; Yan, Yayu ; Li, Qiao-Hong ; Gascon, Jorge ; Zhang, Huabin</creator><creatorcontrib>Raziq, Fazal ; Feng, Chengyang ; Hu, Miao ; Zuo, Shouwei ; Rahman, Mohammad Ziaur ; Yan, Yayu ; Li, Qiao-Hong ; Gascon, Jorge ; Zhang, Huabin</creatorcontrib><description>Photothermal hydrogenation of carbon dioxide (CO2) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO2 emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate reactions during CO2 hydrogenation. We present a novel approach featuring isolated single-atom nickel (Ni) anchored onto indium oxide (In2O3) nanocrystals, serving as an effective photothermal catalyst for CO2 hydrogenation into methane (CH4) with a remarkable near-unity (∼99%) selectivity. Experiments and theoretical simulations have confirmed that isolated Ni sites on the In2O3 surface can effectively stabilize the intermediate products of the CO2 hydrogenation reaction and reduce the transition state energy barrier, thereby changing the reaction path to achieve ultrahigh selective methanation. This study provides comprehensive insights into the design of single-atom catalysts for the highly selective photothermal catalytic hydrogenation of CO2 to methane.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c05873</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>carbon dioxide ; catalysts ; energy ; hydrogenation ; indium ; methane ; methane production ; nanocrystals ; nickel ; value added</subject><ispartof>Journal of the American Chemical Society, 2024-07, Vol.146 (30), p.21008-21016</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9286-3580 ; 0000-0002-7437-1088 ; 0000-0003-1601-2471 ; 0000-0001-7558-7123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c05873$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c05873$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Raziq, Fazal</creatorcontrib><creatorcontrib>Feng, Chengyang</creatorcontrib><creatorcontrib>Hu, Miao</creatorcontrib><creatorcontrib>Zuo, Shouwei</creatorcontrib><creatorcontrib>Rahman, Mohammad Ziaur</creatorcontrib><creatorcontrib>Yan, Yayu</creatorcontrib><creatorcontrib>Li, Qiao-Hong</creatorcontrib><creatorcontrib>Gascon, Jorge</creatorcontrib><creatorcontrib>Zhang, Huabin</creatorcontrib><title>Isolated Ni Atoms Enable Near-Unity CH4 Selectivity for Photothermal CO2 Hydrogenation</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Photothermal hydrogenation of carbon dioxide (CO2) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO2 emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate reactions during CO2 hydrogenation. We present a novel approach featuring isolated single-atom nickel (Ni) anchored onto indium oxide (In2O3) nanocrystals, serving as an effective photothermal catalyst for CO2 hydrogenation into methane (CH4) with a remarkable near-unity (∼99%) selectivity. Experiments and theoretical simulations have confirmed that isolated Ni sites on the In2O3 surface can effectively stabilize the intermediate products of the CO2 hydrogenation reaction and reduce the transition state energy barrier, thereby changing the reaction path to achieve ultrahigh selective methanation. This study provides comprehensive insights into the design of single-atom catalysts for the highly selective photothermal catalytic hydrogenation of CO2 to methane.</description><subject>carbon dioxide</subject><subject>catalysts</subject><subject>energy</subject><subject>hydrogenation</subject><subject>indium</subject><subject>methane</subject><subject>methane production</subject><subject>nanocrystals</subject><subject>nickel</subject><subject>value added</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AUxBdRsFZvfoA9ekl9-39zLKHaQmkFrdew3b7alDSr2a3Qb2-CBY_CwGNgeMz8CLlnMGLA2ePe-TiSHpQ14oIMmOKQKcb1JRkAAM-M1eKa3MS476zklg3I-yyG2iXc0EVFxykcIp00bl0jXaBrs1VTpRMtppK-Yo0-Vd-934aWvuxCCmmH7cHVtFhyOj1t2vCBjUtVaG7J1dbVEe_Od0hWT5O3YprNl8-zYjzPHFcy9eWMd96jz1Hk6LCTBK2FgnUOCracKzB8Y7sl0oCQaG1uwAmtwVvkYkgefv9-tuHriDGVhyp6rGvXYDjGUjAlDNO5Nv9HQZucSWXzv2jHs9yHY9t0G0oGZU-57CmXZ8riBw_Abgg</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Raziq, Fazal</creator><creator>Feng, Chengyang</creator><creator>Hu, Miao</creator><creator>Zuo, Shouwei</creator><creator>Rahman, Mohammad Ziaur</creator><creator>Yan, Yayu</creator><creator>Li, Qiao-Hong</creator><creator>Gascon, Jorge</creator><creator>Zhang, Huabin</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9286-3580</orcidid><orcidid>https://orcid.org/0000-0002-7437-1088</orcidid><orcidid>https://orcid.org/0000-0003-1601-2471</orcidid><orcidid>https://orcid.org/0000-0001-7558-7123</orcidid></search><sort><creationdate>20240731</creationdate><title>Isolated Ni Atoms Enable Near-Unity CH4 Selectivity for Photothermal CO2 Hydrogenation</title><author>Raziq, Fazal ; Feng, Chengyang ; Hu, Miao ; Zuo, Shouwei ; Rahman, Mohammad Ziaur ; Yan, Yayu ; Li, Qiao-Hong ; Gascon, Jorge ; Zhang, Huabin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a254t-5127caccec9e39eaeeae4066350b9050f225072d852047034e88970a3660c8e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>carbon dioxide</topic><topic>catalysts</topic><topic>energy</topic><topic>hydrogenation</topic><topic>indium</topic><topic>methane</topic><topic>methane production</topic><topic>nanocrystals</topic><topic>nickel</topic><topic>value added</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raziq, Fazal</creatorcontrib><creatorcontrib>Feng, Chengyang</creatorcontrib><creatorcontrib>Hu, Miao</creatorcontrib><creatorcontrib>Zuo, Shouwei</creatorcontrib><creatorcontrib>Rahman, Mohammad Ziaur</creatorcontrib><creatorcontrib>Yan, Yayu</creatorcontrib><creatorcontrib>Li, Qiao-Hong</creatorcontrib><creatorcontrib>Gascon, Jorge</creatorcontrib><creatorcontrib>Zhang, Huabin</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raziq, Fazal</au><au>Feng, Chengyang</au><au>Hu, Miao</au><au>Zuo, Shouwei</au><au>Rahman, Mohammad Ziaur</au><au>Yan, Yayu</au><au>Li, Qiao-Hong</au><au>Gascon, Jorge</au><au>Zhang, Huabin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolated Ni Atoms Enable Near-Unity CH4 Selectivity for Photothermal CO2 Hydrogenation</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-07-31</date><risdate>2024</risdate><volume>146</volume><issue>30</issue><spage>21008</spage><epage>21016</epage><pages>21008-21016</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Photothermal hydrogenation of carbon dioxide (CO2) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO2 emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate reactions during CO2 hydrogenation. We present a novel approach featuring isolated single-atom nickel (Ni) anchored onto indium oxide (In2O3) nanocrystals, serving as an effective photothermal catalyst for CO2 hydrogenation into methane (CH4) with a remarkable near-unity (∼99%) selectivity. Experiments and theoretical simulations have confirmed that isolated Ni sites on the In2O3 surface can effectively stabilize the intermediate products of the CO2 hydrogenation reaction and reduce the transition state energy barrier, thereby changing the reaction path to achieve ultrahigh selective methanation. This study provides comprehensive insights into the design of single-atom catalysts for the highly selective photothermal catalytic hydrogenation of CO2 to methane.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.4c05873</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9286-3580</orcidid><orcidid>https://orcid.org/0000-0002-7437-1088</orcidid><orcidid>https://orcid.org/0000-0003-1601-2471</orcidid><orcidid>https://orcid.org/0000-0001-7558-7123</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-07, Vol.146 (30), p.21008-21016 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153716967 |
source | ACS Publications |
subjects | carbon dioxide catalysts energy hydrogenation indium methane methane production nanocrystals nickel value added |
title | Isolated Ni Atoms Enable Near-Unity CH4 Selectivity for Photothermal CO2 Hydrogenation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolated%20Ni%20Atoms%20Enable%20Near-Unity%20CH4%20Selectivity%20for%20Photothermal%20CO2%20Hydrogenation&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Raziq,%20Fazal&rft.date=2024-07-31&rft.volume=146&rft.issue=30&rft.spage=21008&rft.epage=21016&rft.pages=21008-21016&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c05873&rft_dat=%3Cproquest_acs_j%3E3153716967%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067914589&rft_id=info:pmid/&rfr_iscdi=true |