Determination of Surface Charge Density and Charge Mapping of CYTOP Film in Air using Electrostatic Force Microscopy
Cyclic transparent optical polymer (CYTOP), a fluoropolymer, finds a plethora of applications in microelectronic devices for sustainable energy harvesting and memory devices. By and large, these devices demand high voltage breakdown, a high dielectric constant, transparency, charge storage, and rete...
Gespeichert in:
Veröffentlicht in: | Langmuir 2024-08, Vol.40 (31), p.16330-16337 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16337 |
---|---|
container_issue | 31 |
container_start_page | 16330 |
container_title | Langmuir |
container_volume | 40 |
creator | Singh, Shalini Weber, Stefan A. L. Mallick, Dhiman Goswami, Ankur |
description | Cyclic transparent optical polymer (CYTOP), a fluoropolymer, finds a plethora of applications in microelectronic devices for sustainable energy harvesting and memory devices. By and large, these devices demand high voltage breakdown, a high dielectric constant, transparency, charge storage, and retention capabilities. Despite many efforts, comprehensive investigation of the charge distribution, retention, and discharge studies conducted on the CYTOP film at the micro-scale remains elusive. Here, we present direct quantification and mapping of surface charge on the CYTOP surface at room temperature using two different modes of advanced surface probe microscopy i.e., Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). We estimated that the surface charge densities of the CYTOP film using EFM are 1.4 and 3.3 μC/cm2 for the injection of positive and negative charges, respectively. Furthermore, we determined the charge retention time for both injected positive and negative charges. We found that the retention capacity of the negative charges on the CYTOP film is much higher as compared to the positive charges. Moreover, it is also observed that injected negative charges are strongly localized on the CYTOP surface compared to the positive counterpart. Additionally, we demonstrated that charge writing is possible on the CYTOP surface using the AFM conductive tip. These results may find potential applications in energy harvesting, sensing, memory devices, security, and surveillance. |
doi_str_mv | 10.1021/acs.langmuir.4c01504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153714530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153714530</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-b9c662057d1764218a5fc75b517db5abeafd4b85ab1445f1e6f0a4595d164e893</originalsourceid><addsrcrecordid>eNqFkT9PwzAQxS0EoqXwDRDyyJJyTuw4Gau0BaRWRaIMTJHjOMVV_mEnQ789jtoywmTr7r1n3_0QuicwJeCTJyHttBT1ruq1mVIJhAG9QGPCfPBY5PNLNAZOA4_TMBihG2v3ABAHNL5GoyAGRnlIx6ibq06ZStei002NmwK_96YQUuHkS5idwnNVW90dsKjzc2kt2lbXu0GcfG43b3ipywrrGs-0wb0dWotSyc40tnOxEi8b4wLXWrqKbNrDLboqRGnV3emcoI_lYpu8eKvN82syW3nCD6HzsliGoQ-M58T91SeRYIXkLGOE5xkTmRJFTrPI3QilrCAqLEBQFrOchFRFcTBBj8fc1jTfvbJdWmkrVenWpprepgFhASeUBfC_FCLKOY2cY4LoUTqMY40q0tboSphDSiAd0KQOTXpGk57QONvD6YU-q1T-azqzcAI4Cgb7vulN7Xbzd-YPAYydyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084774815</pqid></control><display><type>article</type><title>Determination of Surface Charge Density and Charge Mapping of CYTOP Film in Air using Electrostatic Force Microscopy</title><source>ACS Publications</source><creator>Singh, Shalini ; Weber, Stefan A. L. ; Mallick, Dhiman ; Goswami, Ankur</creator><creatorcontrib>Singh, Shalini ; Weber, Stefan A. L. ; Mallick, Dhiman ; Goswami, Ankur</creatorcontrib><description>Cyclic transparent optical polymer (CYTOP), a fluoropolymer, finds a plethora of applications in microelectronic devices for sustainable energy harvesting and memory devices. By and large, these devices demand high voltage breakdown, a high dielectric constant, transparency, charge storage, and retention capabilities. Despite many efforts, comprehensive investigation of the charge distribution, retention, and discharge studies conducted on the CYTOP film at the micro-scale remains elusive. Here, we present direct quantification and mapping of surface charge on the CYTOP surface at room temperature using two different modes of advanced surface probe microscopy i.e., Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). We estimated that the surface charge densities of the CYTOP film using EFM are 1.4 and 3.3 μC/cm2 for the injection of positive and negative charges, respectively. Furthermore, we determined the charge retention time for both injected positive and negative charges. We found that the retention capacity of the negative charges on the CYTOP film is much higher as compared to the positive charges. Moreover, it is also observed that injected negative charges are strongly localized on the CYTOP surface compared to the positive counterpart. Additionally, we demonstrated that charge writing is possible on the CYTOP surface using the AFM conductive tip. These results may find potential applications in energy harvesting, sensing, memory devices, security, and surveillance.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c01504</identifier><identifier>PMID: 39054764</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>air ; ambient temperature ; atomic force microscopy ; dielectric properties ; electric potential difference ; electrostatic interactions ; memory ; monitoring ; polymers ; renewable energy sources</subject><ispartof>Langmuir, 2024-08, Vol.40 (31), p.16330-16337</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a260t-b9c662057d1764218a5fc75b517db5abeafd4b85ab1445f1e6f0a4595d164e893</cites><orcidid>0000-0002-6622-6403 ; 0000-0003-3052-326X ; 0000-0003-0639-6758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.4c01504$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c01504$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39054764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Shalini</creatorcontrib><creatorcontrib>Weber, Stefan A. L.</creatorcontrib><creatorcontrib>Mallick, Dhiman</creatorcontrib><creatorcontrib>Goswami, Ankur</creatorcontrib><title>Determination of Surface Charge Density and Charge Mapping of CYTOP Film in Air using Electrostatic Force Microscopy</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Cyclic transparent optical polymer (CYTOP), a fluoropolymer, finds a plethora of applications in microelectronic devices for sustainable energy harvesting and memory devices. By and large, these devices demand high voltage breakdown, a high dielectric constant, transparency, charge storage, and retention capabilities. Despite many efforts, comprehensive investigation of the charge distribution, retention, and discharge studies conducted on the CYTOP film at the micro-scale remains elusive. Here, we present direct quantification and mapping of surface charge on the CYTOP surface at room temperature using two different modes of advanced surface probe microscopy i.e., Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). We estimated that the surface charge densities of the CYTOP film using EFM are 1.4 and 3.3 μC/cm2 for the injection of positive and negative charges, respectively. Furthermore, we determined the charge retention time for both injected positive and negative charges. We found that the retention capacity of the negative charges on the CYTOP film is much higher as compared to the positive charges. Moreover, it is also observed that injected negative charges are strongly localized on the CYTOP surface compared to the positive counterpart. Additionally, we demonstrated that charge writing is possible on the CYTOP surface using the AFM conductive tip. These results may find potential applications in energy harvesting, sensing, memory devices, security, and surveillance.</description><subject>air</subject><subject>ambient temperature</subject><subject>atomic force microscopy</subject><subject>dielectric properties</subject><subject>electric potential difference</subject><subject>electrostatic interactions</subject><subject>memory</subject><subject>monitoring</subject><subject>polymers</subject><subject>renewable energy sources</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT9PwzAQxS0EoqXwDRDyyJJyTuw4Gau0BaRWRaIMTJHjOMVV_mEnQ789jtoywmTr7r1n3_0QuicwJeCTJyHttBT1ruq1mVIJhAG9QGPCfPBY5PNLNAZOA4_TMBihG2v3ABAHNL5GoyAGRnlIx6ibq06ZStei002NmwK_96YQUuHkS5idwnNVW90dsKjzc2kt2lbXu0GcfG43b3ipywrrGs-0wb0dWotSyc40tnOxEi8b4wLXWrqKbNrDLboqRGnV3emcoI_lYpu8eKvN82syW3nCD6HzsliGoQ-M58T91SeRYIXkLGOE5xkTmRJFTrPI3QilrCAqLEBQFrOchFRFcTBBj8fc1jTfvbJdWmkrVenWpprepgFhASeUBfC_FCLKOY2cY4LoUTqMY40q0tboSphDSiAd0KQOTXpGk57QONvD6YU-q1T-azqzcAI4Cgb7vulN7Xbzd-YPAYydyw</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Singh, Shalini</creator><creator>Weber, Stefan A. L.</creator><creator>Mallick, Dhiman</creator><creator>Goswami, Ankur</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6622-6403</orcidid><orcidid>https://orcid.org/0000-0003-3052-326X</orcidid><orcidid>https://orcid.org/0000-0003-0639-6758</orcidid></search><sort><creationdate>20240806</creationdate><title>Determination of Surface Charge Density and Charge Mapping of CYTOP Film in Air using Electrostatic Force Microscopy</title><author>Singh, Shalini ; Weber, Stefan A. L. ; Mallick, Dhiman ; Goswami, Ankur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-b9c662057d1764218a5fc75b517db5abeafd4b85ab1445f1e6f0a4595d164e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>air</topic><topic>ambient temperature</topic><topic>atomic force microscopy</topic><topic>dielectric properties</topic><topic>electric potential difference</topic><topic>electrostatic interactions</topic><topic>memory</topic><topic>monitoring</topic><topic>polymers</topic><topic>renewable energy sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Shalini</creatorcontrib><creatorcontrib>Weber, Stefan A. L.</creatorcontrib><creatorcontrib>Mallick, Dhiman</creatorcontrib><creatorcontrib>Goswami, Ankur</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Shalini</au><au>Weber, Stefan A. L.</au><au>Mallick, Dhiman</au><au>Goswami, Ankur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Surface Charge Density and Charge Mapping of CYTOP Film in Air using Electrostatic Force Microscopy</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-08-06</date><risdate>2024</risdate><volume>40</volume><issue>31</issue><spage>16330</spage><epage>16337</epage><pages>16330-16337</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>Cyclic transparent optical polymer (CYTOP), a fluoropolymer, finds a plethora of applications in microelectronic devices for sustainable energy harvesting and memory devices. By and large, these devices demand high voltage breakdown, a high dielectric constant, transparency, charge storage, and retention capabilities. Despite many efforts, comprehensive investigation of the charge distribution, retention, and discharge studies conducted on the CYTOP film at the micro-scale remains elusive. Here, we present direct quantification and mapping of surface charge on the CYTOP surface at room temperature using two different modes of advanced surface probe microscopy i.e., Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). We estimated that the surface charge densities of the CYTOP film using EFM are 1.4 and 3.3 μC/cm2 for the injection of positive and negative charges, respectively. Furthermore, we determined the charge retention time for both injected positive and negative charges. We found that the retention capacity of the negative charges on the CYTOP film is much higher as compared to the positive charges. Moreover, it is also observed that injected negative charges are strongly localized on the CYTOP surface compared to the positive counterpart. Additionally, we demonstrated that charge writing is possible on the CYTOP surface using the AFM conductive tip. These results may find potential applications in energy harvesting, sensing, memory devices, security, and surveillance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39054764</pmid><doi>10.1021/acs.langmuir.4c01504</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6622-6403</orcidid><orcidid>https://orcid.org/0000-0003-3052-326X</orcidid><orcidid>https://orcid.org/0000-0003-0639-6758</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2024-08, Vol.40 (31), p.16330-16337 |
issn | 0743-7463 1520-5827 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153714530 |
source | ACS Publications |
subjects | air ambient temperature atomic force microscopy dielectric properties electric potential difference electrostatic interactions memory monitoring polymers renewable energy sources |
title | Determination of Surface Charge Density and Charge Mapping of CYTOP Film in Air using Electrostatic Force Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Surface%20Charge%20Density%20and%20Charge%20Mapping%20of%20CYTOP%20Film%20in%20Air%20using%20Electrostatic%20Force%20Microscopy&rft.jtitle=Langmuir&rft.au=Singh,%20Shalini&rft.date=2024-08-06&rft.volume=40&rft.issue=31&rft.spage=16330&rft.epage=16337&rft.pages=16330-16337&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c01504&rft_dat=%3Cproquest_cross%3E3153714530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084774815&rft_id=info:pmid/39054764&rfr_iscdi=true |