Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition
The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized us...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-11, Vol.950, p.175454, Article 175454 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 175454 |
container_title | The Science of the total environment |
container_volume | 950 |
creator | Pan, Yiru Meng, Lize Wu, You Zhang, Shenyan Wu, Zijun Zhao, Chu Yang, Guangrui Xu, Jingyang Ren, Yue Huang, Tao Bian, Zihao Jiang, Qihao Zhou, Jian Yang, Hao Yu, Zhaoyuan Yuan, Linwang Liu, Hailong Huang, Changchun |
description | The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized using the reactivity continuum model through 28-day bio-incubation experiments with water samples from the Yangtze River. The relationship between DOM composition and decomposition kinetics was analyzed using optical and molecular characterization combined with apparent decay coefficients. Our results revealed that DOM compounds rich in nitrogen and sulfur were predominantly removed, exhibiting a transition from an unsaturated to a saturated state following microbial degradation. These heteroatomic compounds, which constituted 75.61 % of the DOM compounds positively correlated with the decay coefficient k0, underwent preferential degradation in the early stages of bio-incubation due to their higher bioavailability. Additionally, we observed that S-containing fractions with high molecular weight values (MW > 400 Da) may be associated with larger reactivity grades. This study underscored the complex interplay between DOM composition and its kinetic decomposition in river ecosystems, providing further support for the significance of molecular composition in large river DOM as crucial factors affecting decomposition.
[Display omitted]
•88.64% of the removed formulas during incubations were N and S heteroatomic compounds predominantly in low O/C.•N and S heteroatomic compounds presented a marked decay with high initial apparent decay coefficient.•S-containing fractions with a higher MW (> 400 Da) may be related to the presence of a highly reactive class. |
doi_str_mv | 10.1016/j.scitotenv.2024.175454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153712980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969724056043</els_id><sourcerecordid>3092365766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-632e69a472d4401b3cfaaeb90172b88fe80dbbe34d6ca9e05bb0335136e3fcca3</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhq2qqATavwA-9rLBX-uPI0KlRQL1Us6W154tDrvr1HYi8e_ZNCHixlxGM3rmfaV5EbqkZEkJlVerZfGxpgrTdskIE0uqWtGKT2hBtTINJUx-RgtChG6MNOoUnZWyInMpTb-gU24oF0zTBYKHNIDfDC5jn8Z1KrHGNOEhjrEWXJ8AZ3D-_-45TlCjLzj1OMct5HnGIZaShi0EnPJfN0WPR1crZBzgnd5XdNK7ocC3Qz9Hj7c__tz8au5__7y7ub5vPNOkNpIzkMYJxYIQhHbc985BZwhVrNO6B01C1wEXQXpngLRdRzhvKZfAe-8dP0ff97rrnP5toFQ7xuJhGNwEaVMspy1XlBlNPkaJYVy2SsoZVXvU51RKht6ucxxdfrGU2F0cdmWPcdhdHHYfx3x5cTDZdCOE493b_2fgeg_A_JVthLwTgslDiBl8tSHFD01eAZ-Sots</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092365766</pqid></control><display><type>article</type><title>Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition</title><source>Elsevier ScienceDirect Journals</source><creator>Pan, Yiru ; Meng, Lize ; Wu, You ; Zhang, Shenyan ; Wu, Zijun ; Zhao, Chu ; Yang, Guangrui ; Xu, Jingyang ; Ren, Yue ; Huang, Tao ; Bian, Zihao ; Jiang, Qihao ; Zhou, Jian ; Yang, Hao ; Yu, Zhaoyuan ; Yuan, Linwang ; Liu, Hailong ; Huang, Changchun</creator><creatorcontrib>Pan, Yiru ; Meng, Lize ; Wu, You ; Zhang, Shenyan ; Wu, Zijun ; Zhao, Chu ; Yang, Guangrui ; Xu, Jingyang ; Ren, Yue ; Huang, Tao ; Bian, Zihao ; Jiang, Qihao ; Zhou, Jian ; Yang, Hao ; Yu, Zhaoyuan ; Yuan, Linwang ; Liu, Hailong ; Huang, Changchun</creatorcontrib><description>The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized using the reactivity continuum model through 28-day bio-incubation experiments with water samples from the Yangtze River. The relationship between DOM composition and decomposition kinetics was analyzed using optical and molecular characterization combined with apparent decay coefficients. Our results revealed that DOM compounds rich in nitrogen and sulfur were predominantly removed, exhibiting a transition from an unsaturated to a saturated state following microbial degradation. These heteroatomic compounds, which constituted 75.61 % of the DOM compounds positively correlated with the decay coefficient k0, underwent preferential degradation in the early stages of bio-incubation due to their higher bioavailability. Additionally, we observed that S-containing fractions with high molecular weight values (MW > 400 Da) may be associated with larger reactivity grades. This study underscored the complex interplay between DOM composition and its kinetic decomposition in river ecosystems, providing further support for the significance of molecular composition in large river DOM as crucial factors affecting decomposition.
[Display omitted]
•88.64% of the removed formulas during incubations were N and S heteroatomic compounds predominantly in low O/C.•N and S heteroatomic compounds presented a marked decay with high initial apparent decay coefficient.•S-containing fractions with a higher MW (> 400 Da) may be related to the presence of a highly reactive class.</description><identifier>ISSN: 0048-9697</identifier><identifier>ISSN: 1879-1026</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2024.175454</identifier><identifier>PMID: 39134281</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>bioavailability ; biodegradation ; dissolved organic carbon ; Dissolved organic matter ; environment ; FT-ICR MS ; greenhouse gases ; Kinetic decomposition ; Molecular composition ; molecular weight ; nitrogen ; reaction kinetics ; riparian areas ; rivers ; sulfur ; Yangtze River ; Yangtze River continuum</subject><ispartof>The Science of the total environment, 2024-11, Vol.950, p.175454, Article 175454</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-632e69a472d4401b3cfaaeb90172b88fe80dbbe34d6ca9e05bb0335136e3fcca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969724056043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39134281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Yiru</creatorcontrib><creatorcontrib>Meng, Lize</creatorcontrib><creatorcontrib>Wu, You</creatorcontrib><creatorcontrib>Zhang, Shenyan</creatorcontrib><creatorcontrib>Wu, Zijun</creatorcontrib><creatorcontrib>Zhao, Chu</creatorcontrib><creatorcontrib>Yang, Guangrui</creatorcontrib><creatorcontrib>Xu, Jingyang</creatorcontrib><creatorcontrib>Ren, Yue</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Bian, Zihao</creatorcontrib><creatorcontrib>Jiang, Qihao</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Yu, Zhaoyuan</creatorcontrib><creatorcontrib>Yuan, Linwang</creatorcontrib><creatorcontrib>Liu, Hailong</creatorcontrib><creatorcontrib>Huang, Changchun</creatorcontrib><title>Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized using the reactivity continuum model through 28-day bio-incubation experiments with water samples from the Yangtze River. The relationship between DOM composition and decomposition kinetics was analyzed using optical and molecular characterization combined with apparent decay coefficients. Our results revealed that DOM compounds rich in nitrogen and sulfur were predominantly removed, exhibiting a transition from an unsaturated to a saturated state following microbial degradation. These heteroatomic compounds, which constituted 75.61 % of the DOM compounds positively correlated with the decay coefficient k0, underwent preferential degradation in the early stages of bio-incubation due to their higher bioavailability. Additionally, we observed that S-containing fractions with high molecular weight values (MW > 400 Da) may be associated with larger reactivity grades. This study underscored the complex interplay between DOM composition and its kinetic decomposition in river ecosystems, providing further support for the significance of molecular composition in large river DOM as crucial factors affecting decomposition.
[Display omitted]
•88.64% of the removed formulas during incubations were N and S heteroatomic compounds predominantly in low O/C.•N and S heteroatomic compounds presented a marked decay with high initial apparent decay coefficient.•S-containing fractions with a higher MW (> 400 Da) may be related to the presence of a highly reactive class.</description><subject>bioavailability</subject><subject>biodegradation</subject><subject>dissolved organic carbon</subject><subject>Dissolved organic matter</subject><subject>environment</subject><subject>FT-ICR MS</subject><subject>greenhouse gases</subject><subject>Kinetic decomposition</subject><subject>Molecular composition</subject><subject>molecular weight</subject><subject>nitrogen</subject><subject>reaction kinetics</subject><subject>riparian areas</subject><subject>rivers</subject><subject>sulfur</subject><subject>Yangtze River</subject><subject>Yangtze River continuum</subject><issn>0048-9697</issn><issn>1879-1026</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PGzEQhq2qqATavwA-9rLBX-uPI0KlRQL1Us6W154tDrvr1HYi8e_ZNCHixlxGM3rmfaV5EbqkZEkJlVerZfGxpgrTdskIE0uqWtGKT2hBtTINJUx-RgtChG6MNOoUnZWyInMpTb-gU24oF0zTBYKHNIDfDC5jn8Z1KrHGNOEhjrEWXJ8AZ3D-_-45TlCjLzj1OMct5HnGIZaShi0EnPJfN0WPR1crZBzgnd5XdNK7ocC3Qz9Hj7c__tz8au5__7y7ub5vPNOkNpIzkMYJxYIQhHbc985BZwhVrNO6B01C1wEXQXpngLRdRzhvKZfAe-8dP0ff97rrnP5toFQ7xuJhGNwEaVMspy1XlBlNPkaJYVy2SsoZVXvU51RKht6ucxxdfrGU2F0cdmWPcdhdHHYfx3x5cTDZdCOE493b_2fgeg_A_JVthLwTgslDiBl8tSHFD01eAZ-Sots</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Pan, Yiru</creator><creator>Meng, Lize</creator><creator>Wu, You</creator><creator>Zhang, Shenyan</creator><creator>Wu, Zijun</creator><creator>Zhao, Chu</creator><creator>Yang, Guangrui</creator><creator>Xu, Jingyang</creator><creator>Ren, Yue</creator><creator>Huang, Tao</creator><creator>Bian, Zihao</creator><creator>Jiang, Qihao</creator><creator>Zhou, Jian</creator><creator>Yang, Hao</creator><creator>Yu, Zhaoyuan</creator><creator>Yuan, Linwang</creator><creator>Liu, Hailong</creator><creator>Huang, Changchun</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241110</creationdate><title>Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition</title><author>Pan, Yiru ; Meng, Lize ; Wu, You ; Zhang, Shenyan ; Wu, Zijun ; Zhao, Chu ; Yang, Guangrui ; Xu, Jingyang ; Ren, Yue ; Huang, Tao ; Bian, Zihao ; Jiang, Qihao ; Zhou, Jian ; Yang, Hao ; Yu, Zhaoyuan ; Yuan, Linwang ; Liu, Hailong ; Huang, Changchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-632e69a472d4401b3cfaaeb90172b88fe80dbbe34d6ca9e05bb0335136e3fcca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bioavailability</topic><topic>biodegradation</topic><topic>dissolved organic carbon</topic><topic>Dissolved organic matter</topic><topic>environment</topic><topic>FT-ICR MS</topic><topic>greenhouse gases</topic><topic>Kinetic decomposition</topic><topic>Molecular composition</topic><topic>molecular weight</topic><topic>nitrogen</topic><topic>reaction kinetics</topic><topic>riparian areas</topic><topic>rivers</topic><topic>sulfur</topic><topic>Yangtze River</topic><topic>Yangtze River continuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yiru</creatorcontrib><creatorcontrib>Meng, Lize</creatorcontrib><creatorcontrib>Wu, You</creatorcontrib><creatorcontrib>Zhang, Shenyan</creatorcontrib><creatorcontrib>Wu, Zijun</creatorcontrib><creatorcontrib>Zhao, Chu</creatorcontrib><creatorcontrib>Yang, Guangrui</creatorcontrib><creatorcontrib>Xu, Jingyang</creatorcontrib><creatorcontrib>Ren, Yue</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Bian, Zihao</creatorcontrib><creatorcontrib>Jiang, Qihao</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Yu, Zhaoyuan</creatorcontrib><creatorcontrib>Yuan, Linwang</creatorcontrib><creatorcontrib>Liu, Hailong</creatorcontrib><creatorcontrib>Huang, Changchun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yiru</au><au>Meng, Lize</au><au>Wu, You</au><au>Zhang, Shenyan</au><au>Wu, Zijun</au><au>Zhao, Chu</au><au>Yang, Guangrui</au><au>Xu, Jingyang</au><au>Ren, Yue</au><au>Huang, Tao</au><au>Bian, Zihao</au><au>Jiang, Qihao</au><au>Zhou, Jian</au><au>Yang, Hao</au><au>Yu, Zhaoyuan</au><au>Yuan, Linwang</au><au>Liu, Hailong</au><au>Huang, Changchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2024-11-10</date><risdate>2024</risdate><volume>950</volume><spage>175454</spage><pages>175454-</pages><artnum>175454</artnum><issn>0048-9697</issn><issn>1879-1026</issn><eissn>1879-1026</eissn><abstract>The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized using the reactivity continuum model through 28-day bio-incubation experiments with water samples from the Yangtze River. The relationship between DOM composition and decomposition kinetics was analyzed using optical and molecular characterization combined with apparent decay coefficients. Our results revealed that DOM compounds rich in nitrogen and sulfur were predominantly removed, exhibiting a transition from an unsaturated to a saturated state following microbial degradation. These heteroatomic compounds, which constituted 75.61 % of the DOM compounds positively correlated with the decay coefficient k0, underwent preferential degradation in the early stages of bio-incubation due to their higher bioavailability. Additionally, we observed that S-containing fractions with high molecular weight values (MW > 400 Da) may be associated with larger reactivity grades. This study underscored the complex interplay between DOM composition and its kinetic decomposition in river ecosystems, providing further support for the significance of molecular composition in large river DOM as crucial factors affecting decomposition.
[Display omitted]
•88.64% of the removed formulas during incubations were N and S heteroatomic compounds predominantly in low O/C.•N and S heteroatomic compounds presented a marked decay with high initial apparent decay coefficient.•S-containing fractions with a higher MW (> 400 Da) may be related to the presence of a highly reactive class.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39134281</pmid><doi>10.1016/j.scitotenv.2024.175454</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2024-11, Vol.950, p.175454, Article 175454 |
issn | 0048-9697 1879-1026 1879-1026 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153712980 |
source | Elsevier ScienceDirect Journals |
subjects | bioavailability biodegradation dissolved organic carbon Dissolved organic matter environment FT-ICR MS greenhouse gases Kinetic decomposition Molecular composition molecular weight nitrogen reaction kinetics riparian areas rivers sulfur Yangtze River Yangtze River continuum |
title | Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20composition%20limits%20the%20reaction%20kinetics%20of%20riverine%20dissolved%20organic%20matter%20decomposition&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Pan,%20Yiru&rft.date=2024-11-10&rft.volume=950&rft.spage=175454&rft.pages=175454-&rft.artnum=175454&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2024.175454&rft_dat=%3Cproquest_cross%3E3092365766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092365766&rft_id=info:pmid/39134281&rft_els_id=S0048969724056043&rfr_iscdi=true |