Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition

The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-11, Vol.950, p.175454, Article 175454
Hauptverfasser: Pan, Yiru, Meng, Lize, Wu, You, Zhang, Shenyan, Wu, Zijun, Zhao, Chu, Yang, Guangrui, Xu, Jingyang, Ren, Yue, Huang, Tao, Bian, Zihao, Jiang, Qihao, Zhou, Jian, Yang, Hao, Yu, Zhaoyuan, Yuan, Linwang, Liu, Hailong, Huang, Changchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 175454
container_title The Science of the total environment
container_volume 950
creator Pan, Yiru
Meng, Lize
Wu, You
Zhang, Shenyan
Wu, Zijun
Zhao, Chu
Yang, Guangrui
Xu, Jingyang
Ren, Yue
Huang, Tao
Bian, Zihao
Jiang, Qihao
Zhou, Jian
Yang, Hao
Yu, Zhaoyuan
Yuan, Linwang
Liu, Hailong
Huang, Changchun
description The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized using the reactivity continuum model through 28-day bio-incubation experiments with water samples from the Yangtze River. The relationship between DOM composition and decomposition kinetics was analyzed using optical and molecular characterization combined with apparent decay coefficients. Our results revealed that DOM compounds rich in nitrogen and sulfur were predominantly removed, exhibiting a transition from an unsaturated to a saturated state following microbial degradation. These heteroatomic compounds, which constituted 75.61 % of the DOM compounds positively correlated with the decay coefficient k0, underwent preferential degradation in the early stages of bio-incubation due to their higher bioavailability. Additionally, we observed that S-containing fractions with high molecular weight values (MW > 400 Da) may be associated with larger reactivity grades. This study underscored the complex interplay between DOM composition and its kinetic decomposition in river ecosystems, providing further support for the significance of molecular composition in large river DOM as crucial factors affecting decomposition. [Display omitted] •88.64% of the removed formulas during incubations were N and S heteroatomic compounds predominantly in low O/C.•N and S heteroatomic compounds presented a marked decay with high initial apparent decay coefficient.•S-containing fractions with a higher MW (> 400 Da) may be related to the presence of a highly reactive class.
doi_str_mv 10.1016/j.scitotenv.2024.175454
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153712980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969724056043</els_id><sourcerecordid>3092365766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-632e69a472d4401b3cfaaeb90172b88fe80dbbe34d6ca9e05bb0335136e3fcca3</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhq2qqATavwA-9rLBX-uPI0KlRQL1Us6W154tDrvr1HYi8e_ZNCHixlxGM3rmfaV5EbqkZEkJlVerZfGxpgrTdskIE0uqWtGKT2hBtTINJUx-RgtChG6MNOoUnZWyInMpTb-gU24oF0zTBYKHNIDfDC5jn8Z1KrHGNOEhjrEWXJ8AZ3D-_-45TlCjLzj1OMct5HnGIZaShi0EnPJfN0WPR1crZBzgnd5XdNK7ocC3Qz9Hj7c__tz8au5__7y7ub5vPNOkNpIzkMYJxYIQhHbc985BZwhVrNO6B01C1wEXQXpngLRdRzhvKZfAe-8dP0ff97rrnP5toFQ7xuJhGNwEaVMspy1XlBlNPkaJYVy2SsoZVXvU51RKht6ucxxdfrGU2F0cdmWPcdhdHHYfx3x5cTDZdCOE493b_2fgeg_A_JVthLwTgslDiBl8tSHFD01eAZ-Sots</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092365766</pqid></control><display><type>article</type><title>Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition</title><source>Elsevier ScienceDirect Journals</source><creator>Pan, Yiru ; Meng, Lize ; Wu, You ; Zhang, Shenyan ; Wu, Zijun ; Zhao, Chu ; Yang, Guangrui ; Xu, Jingyang ; Ren, Yue ; Huang, Tao ; Bian, Zihao ; Jiang, Qihao ; Zhou, Jian ; Yang, Hao ; Yu, Zhaoyuan ; Yuan, Linwang ; Liu, Hailong ; Huang, Changchun</creator><creatorcontrib>Pan, Yiru ; Meng, Lize ; Wu, You ; Zhang, Shenyan ; Wu, Zijun ; Zhao, Chu ; Yang, Guangrui ; Xu, Jingyang ; Ren, Yue ; Huang, Tao ; Bian, Zihao ; Jiang, Qihao ; Zhou, Jian ; Yang, Hao ; Yu, Zhaoyuan ; Yuan, Linwang ; Liu, Hailong ; Huang, Changchun</creatorcontrib><description>The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized using the reactivity continuum model through 28-day bio-incubation experiments with water samples from the Yangtze River. The relationship between DOM composition and decomposition kinetics was analyzed using optical and molecular characterization combined with apparent decay coefficients. Our results revealed that DOM compounds rich in nitrogen and sulfur were predominantly removed, exhibiting a transition from an unsaturated to a saturated state following microbial degradation. These heteroatomic compounds, which constituted 75.61 % of the DOM compounds positively correlated with the decay coefficient k0, underwent preferential degradation in the early stages of bio-incubation due to their higher bioavailability. Additionally, we observed that S-containing fractions with high molecular weight values (MW &gt; 400 Da) may be associated with larger reactivity grades. This study underscored the complex interplay between DOM composition and its kinetic decomposition in river ecosystems, providing further support for the significance of molecular composition in large river DOM as crucial factors affecting decomposition. [Display omitted] •88.64% of the removed formulas during incubations were N and S heteroatomic compounds predominantly in low O/C.•N and S heteroatomic compounds presented a marked decay with high initial apparent decay coefficient.•S-containing fractions with a higher MW (&gt; 400 Da) may be related to the presence of a highly reactive class.</description><identifier>ISSN: 0048-9697</identifier><identifier>ISSN: 1879-1026</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2024.175454</identifier><identifier>PMID: 39134281</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>bioavailability ; biodegradation ; dissolved organic carbon ; Dissolved organic matter ; environment ; FT-ICR MS ; greenhouse gases ; Kinetic decomposition ; Molecular composition ; molecular weight ; nitrogen ; reaction kinetics ; riparian areas ; rivers ; sulfur ; Yangtze River ; Yangtze River continuum</subject><ispartof>The Science of the total environment, 2024-11, Vol.950, p.175454, Article 175454</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-632e69a472d4401b3cfaaeb90172b88fe80dbbe34d6ca9e05bb0335136e3fcca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969724056043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39134281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Yiru</creatorcontrib><creatorcontrib>Meng, Lize</creatorcontrib><creatorcontrib>Wu, You</creatorcontrib><creatorcontrib>Zhang, Shenyan</creatorcontrib><creatorcontrib>Wu, Zijun</creatorcontrib><creatorcontrib>Zhao, Chu</creatorcontrib><creatorcontrib>Yang, Guangrui</creatorcontrib><creatorcontrib>Xu, Jingyang</creatorcontrib><creatorcontrib>Ren, Yue</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Bian, Zihao</creatorcontrib><creatorcontrib>Jiang, Qihao</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Yu, Zhaoyuan</creatorcontrib><creatorcontrib>Yuan, Linwang</creatorcontrib><creatorcontrib>Liu, Hailong</creatorcontrib><creatorcontrib>Huang, Changchun</creatorcontrib><title>Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized using the reactivity continuum model through 28-day bio-incubation experiments with water samples from the Yangtze River. The relationship between DOM composition and decomposition kinetics was analyzed using optical and molecular characterization combined with apparent decay coefficients. Our results revealed that DOM compounds rich in nitrogen and sulfur were predominantly removed, exhibiting a transition from an unsaturated to a saturated state following microbial degradation. These heteroatomic compounds, which constituted 75.61 % of the DOM compounds positively correlated with the decay coefficient k0, underwent preferential degradation in the early stages of bio-incubation due to their higher bioavailability. Additionally, we observed that S-containing fractions with high molecular weight values (MW &gt; 400 Da) may be associated with larger reactivity grades. This study underscored the complex interplay between DOM composition and its kinetic decomposition in river ecosystems, providing further support for the significance of molecular composition in large river DOM as crucial factors affecting decomposition. [Display omitted] •88.64% of the removed formulas during incubations were N and S heteroatomic compounds predominantly in low O/C.•N and S heteroatomic compounds presented a marked decay with high initial apparent decay coefficient.•S-containing fractions with a higher MW (&gt; 400 Da) may be related to the presence of a highly reactive class.</description><subject>bioavailability</subject><subject>biodegradation</subject><subject>dissolved organic carbon</subject><subject>Dissolved organic matter</subject><subject>environment</subject><subject>FT-ICR MS</subject><subject>greenhouse gases</subject><subject>Kinetic decomposition</subject><subject>Molecular composition</subject><subject>molecular weight</subject><subject>nitrogen</subject><subject>reaction kinetics</subject><subject>riparian areas</subject><subject>rivers</subject><subject>sulfur</subject><subject>Yangtze River</subject><subject>Yangtze River continuum</subject><issn>0048-9697</issn><issn>1879-1026</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PGzEQhq2qqATavwA-9rLBX-uPI0KlRQL1Us6W154tDrvr1HYi8e_ZNCHixlxGM3rmfaV5EbqkZEkJlVerZfGxpgrTdskIE0uqWtGKT2hBtTINJUx-RgtChG6MNOoUnZWyInMpTb-gU24oF0zTBYKHNIDfDC5jn8Z1KrHGNOEhjrEWXJ8AZ3D-_-45TlCjLzj1OMct5HnGIZaShi0EnPJfN0WPR1crZBzgnd5XdNK7ocC3Qz9Hj7c__tz8au5__7y7ub5vPNOkNpIzkMYJxYIQhHbc985BZwhVrNO6B01C1wEXQXpngLRdRzhvKZfAe-8dP0ff97rrnP5toFQ7xuJhGNwEaVMspy1XlBlNPkaJYVy2SsoZVXvU51RKht6ucxxdfrGU2F0cdmWPcdhdHHYfx3x5cTDZdCOE493b_2fgeg_A_JVthLwTgslDiBl8tSHFD01eAZ-Sots</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Pan, Yiru</creator><creator>Meng, Lize</creator><creator>Wu, You</creator><creator>Zhang, Shenyan</creator><creator>Wu, Zijun</creator><creator>Zhao, Chu</creator><creator>Yang, Guangrui</creator><creator>Xu, Jingyang</creator><creator>Ren, Yue</creator><creator>Huang, Tao</creator><creator>Bian, Zihao</creator><creator>Jiang, Qihao</creator><creator>Zhou, Jian</creator><creator>Yang, Hao</creator><creator>Yu, Zhaoyuan</creator><creator>Yuan, Linwang</creator><creator>Liu, Hailong</creator><creator>Huang, Changchun</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241110</creationdate><title>Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition</title><author>Pan, Yiru ; Meng, Lize ; Wu, You ; Zhang, Shenyan ; Wu, Zijun ; Zhao, Chu ; Yang, Guangrui ; Xu, Jingyang ; Ren, Yue ; Huang, Tao ; Bian, Zihao ; Jiang, Qihao ; Zhou, Jian ; Yang, Hao ; Yu, Zhaoyuan ; Yuan, Linwang ; Liu, Hailong ; Huang, Changchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-632e69a472d4401b3cfaaeb90172b88fe80dbbe34d6ca9e05bb0335136e3fcca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bioavailability</topic><topic>biodegradation</topic><topic>dissolved organic carbon</topic><topic>Dissolved organic matter</topic><topic>environment</topic><topic>FT-ICR MS</topic><topic>greenhouse gases</topic><topic>Kinetic decomposition</topic><topic>Molecular composition</topic><topic>molecular weight</topic><topic>nitrogen</topic><topic>reaction kinetics</topic><topic>riparian areas</topic><topic>rivers</topic><topic>sulfur</topic><topic>Yangtze River</topic><topic>Yangtze River continuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yiru</creatorcontrib><creatorcontrib>Meng, Lize</creatorcontrib><creatorcontrib>Wu, You</creatorcontrib><creatorcontrib>Zhang, Shenyan</creatorcontrib><creatorcontrib>Wu, Zijun</creatorcontrib><creatorcontrib>Zhao, Chu</creatorcontrib><creatorcontrib>Yang, Guangrui</creatorcontrib><creatorcontrib>Xu, Jingyang</creatorcontrib><creatorcontrib>Ren, Yue</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Bian, Zihao</creatorcontrib><creatorcontrib>Jiang, Qihao</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Yu, Zhaoyuan</creatorcontrib><creatorcontrib>Yuan, Linwang</creatorcontrib><creatorcontrib>Liu, Hailong</creatorcontrib><creatorcontrib>Huang, Changchun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yiru</au><au>Meng, Lize</au><au>Wu, You</au><au>Zhang, Shenyan</au><au>Wu, Zijun</au><au>Zhao, Chu</au><au>Yang, Guangrui</au><au>Xu, Jingyang</au><au>Ren, Yue</au><au>Huang, Tao</au><au>Bian, Zihao</au><au>Jiang, Qihao</au><au>Zhou, Jian</au><au>Yang, Hao</au><au>Yu, Zhaoyuan</au><au>Yuan, Linwang</au><au>Liu, Hailong</au><au>Huang, Changchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2024-11-10</date><risdate>2024</risdate><volume>950</volume><spage>175454</spage><pages>175454-</pages><artnum>175454</artnum><issn>0048-9697</issn><issn>1879-1026</issn><eissn>1879-1026</eissn><abstract>The bioavailability and degradation of riverine dissolved organic matter (DOM) play crucial roles in greenhouse gas emissions; however, studies on the kinetic decomposition of fluvial DOM remain scarce. In this study, the decomposition kinetics of dissolved organic carbon (DOC) were characterized using the reactivity continuum model through 28-day bio-incubation experiments with water samples from the Yangtze River. The relationship between DOM composition and decomposition kinetics was analyzed using optical and molecular characterization combined with apparent decay coefficients. Our results revealed that DOM compounds rich in nitrogen and sulfur were predominantly removed, exhibiting a transition from an unsaturated to a saturated state following microbial degradation. These heteroatomic compounds, which constituted 75.61 % of the DOM compounds positively correlated with the decay coefficient k0, underwent preferential degradation in the early stages of bio-incubation due to their higher bioavailability. Additionally, we observed that S-containing fractions with high molecular weight values (MW &gt; 400 Da) may be associated with larger reactivity grades. This study underscored the complex interplay between DOM composition and its kinetic decomposition in river ecosystems, providing further support for the significance of molecular composition in large river DOM as crucial factors affecting decomposition. [Display omitted] •88.64% of the removed formulas during incubations were N and S heteroatomic compounds predominantly in low O/C.•N and S heteroatomic compounds presented a marked decay with high initial apparent decay coefficient.•S-containing fractions with a higher MW (&gt; 400 Da) may be related to the presence of a highly reactive class.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39134281</pmid><doi>10.1016/j.scitotenv.2024.175454</doi></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2024-11, Vol.950, p.175454, Article 175454
issn 0048-9697
1879-1026
1879-1026
language eng
recordid cdi_proquest_miscellaneous_3153712980
source Elsevier ScienceDirect Journals
subjects bioavailability
biodegradation
dissolved organic carbon
Dissolved organic matter
environment
FT-ICR MS
greenhouse gases
Kinetic decomposition
Molecular composition
molecular weight
nitrogen
reaction kinetics
riparian areas
rivers
sulfur
Yangtze River
Yangtze River continuum
title Molecular composition limits the reaction kinetics of riverine dissolved organic matter decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20composition%20limits%20the%20reaction%20kinetics%20of%20riverine%20dissolved%20organic%20matter%20decomposition&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Pan,%20Yiru&rft.date=2024-11-10&rft.volume=950&rft.spage=175454&rft.pages=175454-&rft.artnum=175454&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2024.175454&rft_dat=%3Cproquest_cross%3E3092365766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092365766&rft_id=info:pmid/39134281&rft_els_id=S0048969724056043&rfr_iscdi=true