READRetro: natural product biosynthesis predicting with retrieval‐augmented dual‐view retrosynthesis

Summary Plants, as a sessile organism, produce various secondary metabolites to interact with the environment. These chemicals have fascinated the plant science community because of their ecological significance and notable biological activity. However, predicting the complete biosynthetic pathways...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2024-09, Vol.243 (6), p.2512-2527
Hauptverfasser: Kim, Taein, Lee, Seul, Kwak, Yejin, Choi, Min‐Soo, Park, Jeongbin, Hwang, Sung Ju, Kim, Sang‐Gyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2527
container_issue 6
container_start_page 2512
container_title The New phytologist
container_volume 243
creator Kim, Taein
Lee, Seul
Kwak, Yejin
Choi, Min‐Soo
Park, Jeongbin
Hwang, Sung Ju
Kim, Sang‐Gyu
description Summary Plants, as a sessile organism, produce various secondary metabolites to interact with the environment. These chemicals have fascinated the plant science community because of their ecological significance and notable biological activity. However, predicting the complete biosynthetic pathways from target molecules to metabolic building blocks remains a challenge. Here, we propose retrieval‐augmented dual‐view retrosynthesis (READRetro) as a practical bio‐retrosynthesis tool to predict the biosynthetic pathways of plant natural products. Conventional bio‐retrosynthesis models have been limited in their ability to predict biosynthetic pathways for natural products. READRetro was optimized for the prediction of complex metabolic pathways by incorporating cutting‐edge deep learning architectures, an ensemble approach, and two retrievers. Evaluation of single‐ and multi‐step retrosynthesis showed that each component of READRetro significantly improved its ability to predict biosynthetic pathways. READRetro was also able to propose the known pathways of secondary metabolites such as monoterpene indole alkaloids and the unknown pathway of menisdaurilide, demonstrating its applicability to real‐world bio‐retrosynthesis of plant natural products. For researchers interested in the biosynthesis and production of secondary metabolites, a user‐friendly website (https://readretro.net) and the open‐source code of READRetro have been made available.
doi_str_mv 10.1111/nph.20012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153712944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086383424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2762-48339a9f9272228c71d8380e78e99c976785cbd8de2eda6c573b1bae3486abdf3</originalsourceid><addsrcrecordid>eNqF0ctKAzEUBuAgitbLwheQATe6GM1lJhd3pV5BVETB3ZBJTtvIdKZOZlq68xF8Rp_EtPUCgphNyOHLD4cfoV2Cj0g4x-V4eEQxJnQFdUjCVSwJE6uogzGVMU_40wba9P4ZY6xSTtfRBlNYkvDqoOH9Wff0Hpq6OolK3bS1LqJxXdnWNFHuKj8rmyF458MQrDONKwfR1DXDqA5_HEx08f76ptvBCMoGbGTbxWDiYLoQPwHbaK2vCw87n_cWejw_e-hdxte3F1e97nVsqOA0TiRjSqu-ooJSKo0gVjKJQUhQyijBhUxNbqUFClZzkwqWk1wDSyTXue2zLXSwzA1bvLTgm2zkvIGi0CVUrc8YSZkgVCXJ_xRLziRL6Jzu_6LPVVuXYZGgVMoo4yIN6nCpTFjc19DPxrUb6XqWEZzNm8pCU9miqWD3PhPbfAT2W35VE8DxEkxdAbO_k7Kbu8tl5Afc1J_h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095323675</pqid></control><display><type>article</type><title>READRetro: natural product biosynthesis predicting with retrieval‐augmented dual‐view retrosynthesis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Taein ; Lee, Seul ; Kwak, Yejin ; Choi, Min‐Soo ; Park, Jeongbin ; Hwang, Sung Ju ; Kim, Sang‐Gyu</creator><creatorcontrib>Kim, Taein ; Lee, Seul ; Kwak, Yejin ; Choi, Min‐Soo ; Park, Jeongbin ; Hwang, Sung Ju ; Kim, Sang‐Gyu</creatorcontrib><description>Summary Plants, as a sessile organism, produce various secondary metabolites to interact with the environment. These chemicals have fascinated the plant science community because of their ecological significance and notable biological activity. However, predicting the complete biosynthetic pathways from target molecules to metabolic building blocks remains a challenge. Here, we propose retrieval‐augmented dual‐view retrosynthesis (READRetro) as a practical bio‐retrosynthesis tool to predict the biosynthetic pathways of plant natural products. Conventional bio‐retrosynthesis models have been limited in their ability to predict biosynthetic pathways for natural products. READRetro was optimized for the prediction of complex metabolic pathways by incorporating cutting‐edge deep learning architectures, an ensemble approach, and two retrievers. Evaluation of single‐ and multi‐step retrosynthesis showed that each component of READRetro significantly improved its ability to predict biosynthetic pathways. READRetro was also able to propose the known pathways of secondary metabolites such as monoterpene indole alkaloids and the unknown pathway of menisdaurilide, demonstrating its applicability to real‐world bio‐retrosynthesis of plant natural products. For researchers interested in the biosynthesis and production of secondary metabolites, a user‐friendly website (https://readretro.net) and the open‐source code of READRetro have been made available.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.20012</identifier><identifier>PMID: 39081009</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>bioactive properties ; Biological activity ; Biosynthesis ; bio‐retrosynthesis ; Chemical activity ; Deep learning ; indoles ; Internet ; Metabolic pathways ; Metabolism ; Metabolites ; monoterpenoids ; Natural products ; Plants ; prediction ; Predictions ; Retrieval ; retriever ; secondary metabolite ; Secondary metabolites ; Sessile species ; Source code</subject><ispartof>The New phytologist, 2024-09, Vol.243 (6), p.2512-2527</ispartof><rights>2024 The Author(s). © 2024 New Phytologist Foundation.</rights><rights>2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.</rights><rights>Copyright © 2024 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2762-48339a9f9272228c71d8380e78e99c976785cbd8de2eda6c573b1bae3486abdf3</cites><orcidid>0000-0002-9064-4912 ; 0000-0003-2574-3233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.20012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.20012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39081009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Taein</creatorcontrib><creatorcontrib>Lee, Seul</creatorcontrib><creatorcontrib>Kwak, Yejin</creatorcontrib><creatorcontrib>Choi, Min‐Soo</creatorcontrib><creatorcontrib>Park, Jeongbin</creatorcontrib><creatorcontrib>Hwang, Sung Ju</creatorcontrib><creatorcontrib>Kim, Sang‐Gyu</creatorcontrib><title>READRetro: natural product biosynthesis predicting with retrieval‐augmented dual‐view retrosynthesis</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Plants, as a sessile organism, produce various secondary metabolites to interact with the environment. These chemicals have fascinated the plant science community because of their ecological significance and notable biological activity. However, predicting the complete biosynthetic pathways from target molecules to metabolic building blocks remains a challenge. Here, we propose retrieval‐augmented dual‐view retrosynthesis (READRetro) as a practical bio‐retrosynthesis tool to predict the biosynthetic pathways of plant natural products. Conventional bio‐retrosynthesis models have been limited in their ability to predict biosynthetic pathways for natural products. READRetro was optimized for the prediction of complex metabolic pathways by incorporating cutting‐edge deep learning architectures, an ensemble approach, and two retrievers. Evaluation of single‐ and multi‐step retrosynthesis showed that each component of READRetro significantly improved its ability to predict biosynthetic pathways. READRetro was also able to propose the known pathways of secondary metabolites such as monoterpene indole alkaloids and the unknown pathway of menisdaurilide, demonstrating its applicability to real‐world bio‐retrosynthesis of plant natural products. For researchers interested in the biosynthesis and production of secondary metabolites, a user‐friendly website (https://readretro.net) and the open‐source code of READRetro have been made available.</description><subject>bioactive properties</subject><subject>Biological activity</subject><subject>Biosynthesis</subject><subject>bio‐retrosynthesis</subject><subject>Chemical activity</subject><subject>Deep learning</subject><subject>indoles</subject><subject>Internet</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>monoterpenoids</subject><subject>Natural products</subject><subject>Plants</subject><subject>prediction</subject><subject>Predictions</subject><subject>Retrieval</subject><subject>retriever</subject><subject>secondary metabolite</subject><subject>Secondary metabolites</subject><subject>Sessile species</subject><subject>Source code</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0ctKAzEUBuAgitbLwheQATe6GM1lJhd3pV5BVETB3ZBJTtvIdKZOZlq68xF8Rp_EtPUCgphNyOHLD4cfoV2Cj0g4x-V4eEQxJnQFdUjCVSwJE6uogzGVMU_40wba9P4ZY6xSTtfRBlNYkvDqoOH9Wff0Hpq6OolK3bS1LqJxXdnWNFHuKj8rmyF458MQrDONKwfR1DXDqA5_HEx08f76ptvBCMoGbGTbxWDiYLoQPwHbaK2vCw87n_cWejw_e-hdxte3F1e97nVsqOA0TiRjSqu-ooJSKo0gVjKJQUhQyijBhUxNbqUFClZzkwqWk1wDSyTXue2zLXSwzA1bvLTgm2zkvIGi0CVUrc8YSZkgVCXJ_xRLziRL6Jzu_6LPVVuXYZGgVMoo4yIN6nCpTFjc19DPxrUb6XqWEZzNm8pCU9miqWD3PhPbfAT2W35VE8DxEkxdAbO_k7Kbu8tl5Afc1J_h</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Kim, Taein</creator><creator>Lee, Seul</creator><creator>Kwak, Yejin</creator><creator>Choi, Min‐Soo</creator><creator>Park, Jeongbin</creator><creator>Hwang, Sung Ju</creator><creator>Kim, Sang‐Gyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9064-4912</orcidid><orcidid>https://orcid.org/0000-0003-2574-3233</orcidid></search><sort><creationdate>202409</creationdate><title>READRetro: natural product biosynthesis predicting with retrieval‐augmented dual‐view retrosynthesis</title><author>Kim, Taein ; Lee, Seul ; Kwak, Yejin ; Choi, Min‐Soo ; Park, Jeongbin ; Hwang, Sung Ju ; Kim, Sang‐Gyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2762-48339a9f9272228c71d8380e78e99c976785cbd8de2eda6c573b1bae3486abdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bioactive properties</topic><topic>Biological activity</topic><topic>Biosynthesis</topic><topic>bio‐retrosynthesis</topic><topic>Chemical activity</topic><topic>Deep learning</topic><topic>indoles</topic><topic>Internet</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>monoterpenoids</topic><topic>Natural products</topic><topic>Plants</topic><topic>prediction</topic><topic>Predictions</topic><topic>Retrieval</topic><topic>retriever</topic><topic>secondary metabolite</topic><topic>Secondary metabolites</topic><topic>Sessile species</topic><topic>Source code</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Taein</creatorcontrib><creatorcontrib>Lee, Seul</creatorcontrib><creatorcontrib>Kwak, Yejin</creatorcontrib><creatorcontrib>Choi, Min‐Soo</creatorcontrib><creatorcontrib>Park, Jeongbin</creatorcontrib><creatorcontrib>Hwang, Sung Ju</creatorcontrib><creatorcontrib>Kim, Sang‐Gyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Taein</au><au>Lee, Seul</au><au>Kwak, Yejin</au><au>Choi, Min‐Soo</au><au>Park, Jeongbin</au><au>Hwang, Sung Ju</au><au>Kim, Sang‐Gyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>READRetro: natural product biosynthesis predicting with retrieval‐augmented dual‐view retrosynthesis</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-09</date><risdate>2024</risdate><volume>243</volume><issue>6</issue><spage>2512</spage><epage>2527</epage><pages>2512-2527</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>Summary Plants, as a sessile organism, produce various secondary metabolites to interact with the environment. These chemicals have fascinated the plant science community because of their ecological significance and notable biological activity. However, predicting the complete biosynthetic pathways from target molecules to metabolic building blocks remains a challenge. Here, we propose retrieval‐augmented dual‐view retrosynthesis (READRetro) as a practical bio‐retrosynthesis tool to predict the biosynthetic pathways of plant natural products. Conventional bio‐retrosynthesis models have been limited in their ability to predict biosynthetic pathways for natural products. READRetro was optimized for the prediction of complex metabolic pathways by incorporating cutting‐edge deep learning architectures, an ensemble approach, and two retrievers. Evaluation of single‐ and multi‐step retrosynthesis showed that each component of READRetro significantly improved its ability to predict biosynthetic pathways. READRetro was also able to propose the known pathways of secondary metabolites such as monoterpene indole alkaloids and the unknown pathway of menisdaurilide, demonstrating its applicability to real‐world bio‐retrosynthesis of plant natural products. For researchers interested in the biosynthesis and production of secondary metabolites, a user‐friendly website (https://readretro.net) and the open‐source code of READRetro have been made available.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39081009</pmid><doi>10.1111/nph.20012</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9064-4912</orcidid><orcidid>https://orcid.org/0000-0003-2574-3233</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2024-09, Vol.243 (6), p.2512-2527
issn 0028-646X
1469-8137
1469-8137
language eng
recordid cdi_proquest_miscellaneous_3153712944
source Wiley Online Library Journals Frontfile Complete
subjects bioactive properties
Biological activity
Biosynthesis
bio‐retrosynthesis
Chemical activity
Deep learning
indoles
Internet
Metabolic pathways
Metabolism
Metabolites
monoterpenoids
Natural products
Plants
prediction
Predictions
Retrieval
retriever
secondary metabolite
Secondary metabolites
Sessile species
Source code
title READRetro: natural product biosynthesis predicting with retrieval‐augmented dual‐view retrosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=READRetro:%20natural%20product%20biosynthesis%20predicting%20with%20retrieval%E2%80%90augmented%20dual%E2%80%90view%20retrosynthesis&rft.jtitle=The%20New%20phytologist&rft.au=Kim,%20Taein&rft.date=2024-09&rft.volume=243&rft.issue=6&rft.spage=2512&rft.epage=2527&rft.pages=2512-2527&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.20012&rft_dat=%3Cproquest_cross%3E3086383424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095323675&rft_id=info:pmid/39081009&rfr_iscdi=true