Enhancing oxidative desulfurization using sludge-derived ferrate (VI) for dibenzothiophene: An optimization study

Sulfur emissions pose a substantial threat to human health and the environment. To address this, stringent regulations limit sulfur content in fuels, and innovative desulfurization technologies are under active investigation. Oxidative desulfurization (ODS) employs oxidants to convert sulfur compoun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cleaner production 2024-09, Vol.470, p.143307, Article 143307
Hauptverfasser: Haboc, Micah M., Dugos, Nathaniel P., Choi, Angelo Earvin Sy, Wan, Meng-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 143307
container_title Journal of cleaner production
container_volume 470
creator Haboc, Micah M.
Dugos, Nathaniel P.
Choi, Angelo Earvin Sy
Wan, Meng-Wei
description Sulfur emissions pose a substantial threat to human health and the environment. To address this, stringent regulations limit sulfur content in fuels, and innovative desulfurization technologies are under active investigation. Oxidative desulfurization (ODS) employs oxidants to convert sulfur compounds into more readily recoverable sulfones. This study explores high-shear mixing in ODS, known as mixing-assisted oxidative desulfurization (MAOD), focusing on dibenzothiophene (DBT) oxidation in model fuels and pyrolysis oil. Fe(VI) derived from drinking water treatment sludge via wet oxidation is utilized in the MAOD process. The research evaluates the impact of ferrate concentration (400–600 ppm), phase transfer agent (PTA) concentration (100–300 mg per 50 mL of fuel), agitation speed (4,400 to 10,800 rpm), and temperature (40–60 °C) on % DBT conversion. Experimental sulfur conversions range from 63.4 % to 99.6 %. Through response surface methodology, optimal parameters of 537 ppm Fe(VI), 114 mg PTA per 50 mL of model fuel, 8,157 rpm agitation speed, and 41.7 °C are determined. These parameters are applied to pyrolysis oil, achieving a desulfurization efficiency of 53.2 %. Notably, increasing Fe(VI) concentration, agitation speed, and temperature significantly enhances sulfur reduction. The study underscores the potential of using potassium ferrate derived from drinking water treatment sludge in MAOD for effective desulfurization and provides insights into the impact of operating conditions on desulfurization efficiency. Ultimately, the research contributes to advancing environmentally friendly and cost-effective desulfurization technologies. [Display omitted] •Mixing assisted oxidative desulfurization was applied to waste tire pyrolysis oil.•Ferrate (Fe(VI)) oxidant was derived from drinking water treatment sludge.•Fe(VI) concentration was found significant in the optimization analysis.•The maximum DBT conversion in model fuel reached 99.6 % under Box–Behnken design.•Pyrolysis oil desulfurization reached 53.2 % using optimal parameters.
doi_str_mv 10.1016/j.jclepro.2024.143307
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153712471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959652624027562</els_id><sourcerecordid>3153712471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-81faff1eae0c8a4778a9d2848c66c9f5f437045f27e149aac7c4b2f79daa5f733</originalsourceid><addsrcrecordid>eNqFkEFPwjAUx3fQREQ_gkmPeNhsu27dvBhCUElIvKjXprSvUDJaaDcifHpHwLOnl5f3-_-T90uSB4Izgkn5tM7WqoFt8BnFlGWE5TnmV8kA10WdlgUtb5LbGNcYE445GyS7qVtJp6xbIv9jtWztHpCG2DWmC_bY796hLp7usen0ElINoWc0MhCCbAGNvmePyPiAtF2AO_p2Zf12BQ6e0dghv23t5q8ntp0-3CXXRjYR7i9zmHy9Tj8n7-n84202Gc9TRSlu04oYaQwBCVhVknFeyVrTilWqLFVtCsNyjllhKAfCaikVV2xBDa-1lIXheT5MRufeXsaug9iKjY0KmkY68F0UOSlyTijjpEeLM6qCjzGAEdtgNzIcBMHipFWsxUWrOGkVZ6197uWcg_6PvYUgorLgFGgbQLVCe_tPwy84pIie</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153712471</pqid></control><display><type>article</type><title>Enhancing oxidative desulfurization using sludge-derived ferrate (VI) for dibenzothiophene: An optimization study</title><source>Elsevier ScienceDirect Journals</source><creator>Haboc, Micah M. ; Dugos, Nathaniel P. ; Choi, Angelo Earvin Sy ; Wan, Meng-Wei</creator><creatorcontrib>Haboc, Micah M. ; Dugos, Nathaniel P. ; Choi, Angelo Earvin Sy ; Wan, Meng-Wei</creatorcontrib><description>Sulfur emissions pose a substantial threat to human health and the environment. To address this, stringent regulations limit sulfur content in fuels, and innovative desulfurization technologies are under active investigation. Oxidative desulfurization (ODS) employs oxidants to convert sulfur compounds into more readily recoverable sulfones. This study explores high-shear mixing in ODS, known as mixing-assisted oxidative desulfurization (MAOD), focusing on dibenzothiophene (DBT) oxidation in model fuels and pyrolysis oil. Fe(VI) derived from drinking water treatment sludge via wet oxidation is utilized in the MAOD process. The research evaluates the impact of ferrate concentration (400–600 ppm), phase transfer agent (PTA) concentration (100–300 mg per 50 mL of fuel), agitation speed (4,400 to 10,800 rpm), and temperature (40–60 °C) on % DBT conversion. Experimental sulfur conversions range from 63.4 % to 99.6 %. Through response surface methodology, optimal parameters of 537 ppm Fe(VI), 114 mg PTA per 50 mL of model fuel, 8,157 rpm agitation speed, and 41.7 °C are determined. These parameters are applied to pyrolysis oil, achieving a desulfurization efficiency of 53.2 %. Notably, increasing Fe(VI) concentration, agitation speed, and temperature significantly enhances sulfur reduction. The study underscores the potential of using potassium ferrate derived from drinking water treatment sludge in MAOD for effective desulfurization and provides insights into the impact of operating conditions on desulfurization efficiency. Ultimately, the research contributes to advancing environmentally friendly and cost-effective desulfurization technologies. [Display omitted] •Mixing assisted oxidative desulfurization was applied to waste tire pyrolysis oil.•Ferrate (Fe(VI)) oxidant was derived from drinking water treatment sludge.•Fe(VI) concentration was found significant in the optimization analysis.•The maximum DBT conversion in model fuel reached 99.6 % under Box–Behnken design.•Pyrolysis oil desulfurization reached 53.2 % using optimal parameters.</description><identifier>ISSN: 0959-6526</identifier><identifier>DOI: 10.1016/j.jclepro.2024.143307</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>agitation ; cost effectiveness ; desulfurization ; Dibenzothiophene ; Ferrate ; human health ; Mixing-assisted oxidative desulfurization ; oxidation ; potassium ; Pyrolysis oil ; pyrolysis oils ; response surface methodology ; Sludge ; sulfur ; temperature ; Waste tires ; water treatment</subject><ispartof>Journal of cleaner production, 2024-09, Vol.470, p.143307, Article 143307</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-81faff1eae0c8a4778a9d2848c66c9f5f437045f27e149aac7c4b2f79daa5f733</cites><orcidid>0000-0003-4332-9538 ; 0000-0001-5497-3121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0959652624027562$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Haboc, Micah M.</creatorcontrib><creatorcontrib>Dugos, Nathaniel P.</creatorcontrib><creatorcontrib>Choi, Angelo Earvin Sy</creatorcontrib><creatorcontrib>Wan, Meng-Wei</creatorcontrib><title>Enhancing oxidative desulfurization using sludge-derived ferrate (VI) for dibenzothiophene: An optimization study</title><title>Journal of cleaner production</title><description>Sulfur emissions pose a substantial threat to human health and the environment. To address this, stringent regulations limit sulfur content in fuels, and innovative desulfurization technologies are under active investigation. Oxidative desulfurization (ODS) employs oxidants to convert sulfur compounds into more readily recoverable sulfones. This study explores high-shear mixing in ODS, known as mixing-assisted oxidative desulfurization (MAOD), focusing on dibenzothiophene (DBT) oxidation in model fuels and pyrolysis oil. Fe(VI) derived from drinking water treatment sludge via wet oxidation is utilized in the MAOD process. The research evaluates the impact of ferrate concentration (400–600 ppm), phase transfer agent (PTA) concentration (100–300 mg per 50 mL of fuel), agitation speed (4,400 to 10,800 rpm), and temperature (40–60 °C) on % DBT conversion. Experimental sulfur conversions range from 63.4 % to 99.6 %. Through response surface methodology, optimal parameters of 537 ppm Fe(VI), 114 mg PTA per 50 mL of model fuel, 8,157 rpm agitation speed, and 41.7 °C are determined. These parameters are applied to pyrolysis oil, achieving a desulfurization efficiency of 53.2 %. Notably, increasing Fe(VI) concentration, agitation speed, and temperature significantly enhances sulfur reduction. The study underscores the potential of using potassium ferrate derived from drinking water treatment sludge in MAOD for effective desulfurization and provides insights into the impact of operating conditions on desulfurization efficiency. Ultimately, the research contributes to advancing environmentally friendly and cost-effective desulfurization technologies. [Display omitted] •Mixing assisted oxidative desulfurization was applied to waste tire pyrolysis oil.•Ferrate (Fe(VI)) oxidant was derived from drinking water treatment sludge.•Fe(VI) concentration was found significant in the optimization analysis.•The maximum DBT conversion in model fuel reached 99.6 % under Box–Behnken design.•Pyrolysis oil desulfurization reached 53.2 % using optimal parameters.</description><subject>agitation</subject><subject>cost effectiveness</subject><subject>desulfurization</subject><subject>Dibenzothiophene</subject><subject>Ferrate</subject><subject>human health</subject><subject>Mixing-assisted oxidative desulfurization</subject><subject>oxidation</subject><subject>potassium</subject><subject>Pyrolysis oil</subject><subject>pyrolysis oils</subject><subject>response surface methodology</subject><subject>Sludge</subject><subject>sulfur</subject><subject>temperature</subject><subject>Waste tires</subject><subject>water treatment</subject><issn>0959-6526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwjAUx3fQREQ_gkmPeNhsu27dvBhCUElIvKjXprSvUDJaaDcifHpHwLOnl5f3-_-T90uSB4Izgkn5tM7WqoFt8BnFlGWE5TnmV8kA10WdlgUtb5LbGNcYE445GyS7qVtJp6xbIv9jtWztHpCG2DWmC_bY796hLp7usen0ElINoWc0MhCCbAGNvmePyPiAtF2AO_p2Zf12BQ6e0dghv23t5q8ntp0-3CXXRjYR7i9zmHy9Tj8n7-n84202Gc9TRSlu04oYaQwBCVhVknFeyVrTilWqLFVtCsNyjllhKAfCaikVV2xBDa-1lIXheT5MRufeXsaug9iKjY0KmkY68F0UOSlyTijjpEeLM6qCjzGAEdtgNzIcBMHipFWsxUWrOGkVZ6197uWcg_6PvYUgorLgFGgbQLVCe_tPwy84pIie</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Haboc, Micah M.</creator><creator>Dugos, Nathaniel P.</creator><creator>Choi, Angelo Earvin Sy</creator><creator>Wan, Meng-Wei</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4332-9538</orcidid><orcidid>https://orcid.org/0000-0001-5497-3121</orcidid></search><sort><creationdate>20240910</creationdate><title>Enhancing oxidative desulfurization using sludge-derived ferrate (VI) for dibenzothiophene: An optimization study</title><author>Haboc, Micah M. ; Dugos, Nathaniel P. ; Choi, Angelo Earvin Sy ; Wan, Meng-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-81faff1eae0c8a4778a9d2848c66c9f5f437045f27e149aac7c4b2f79daa5f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>agitation</topic><topic>cost effectiveness</topic><topic>desulfurization</topic><topic>Dibenzothiophene</topic><topic>Ferrate</topic><topic>human health</topic><topic>Mixing-assisted oxidative desulfurization</topic><topic>oxidation</topic><topic>potassium</topic><topic>Pyrolysis oil</topic><topic>pyrolysis oils</topic><topic>response surface methodology</topic><topic>Sludge</topic><topic>sulfur</topic><topic>temperature</topic><topic>Waste tires</topic><topic>water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haboc, Micah M.</creatorcontrib><creatorcontrib>Dugos, Nathaniel P.</creatorcontrib><creatorcontrib>Choi, Angelo Earvin Sy</creatorcontrib><creatorcontrib>Wan, Meng-Wei</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of cleaner production</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haboc, Micah M.</au><au>Dugos, Nathaniel P.</au><au>Choi, Angelo Earvin Sy</au><au>Wan, Meng-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing oxidative desulfurization using sludge-derived ferrate (VI) for dibenzothiophene: An optimization study</atitle><jtitle>Journal of cleaner production</jtitle><date>2024-09-10</date><risdate>2024</risdate><volume>470</volume><spage>143307</spage><pages>143307-</pages><artnum>143307</artnum><issn>0959-6526</issn><abstract>Sulfur emissions pose a substantial threat to human health and the environment. To address this, stringent regulations limit sulfur content in fuels, and innovative desulfurization technologies are under active investigation. Oxidative desulfurization (ODS) employs oxidants to convert sulfur compounds into more readily recoverable sulfones. This study explores high-shear mixing in ODS, known as mixing-assisted oxidative desulfurization (MAOD), focusing on dibenzothiophene (DBT) oxidation in model fuels and pyrolysis oil. Fe(VI) derived from drinking water treatment sludge via wet oxidation is utilized in the MAOD process. The research evaluates the impact of ferrate concentration (400–600 ppm), phase transfer agent (PTA) concentration (100–300 mg per 50 mL of fuel), agitation speed (4,400 to 10,800 rpm), and temperature (40–60 °C) on % DBT conversion. Experimental sulfur conversions range from 63.4 % to 99.6 %. Through response surface methodology, optimal parameters of 537 ppm Fe(VI), 114 mg PTA per 50 mL of model fuel, 8,157 rpm agitation speed, and 41.7 °C are determined. These parameters are applied to pyrolysis oil, achieving a desulfurization efficiency of 53.2 %. Notably, increasing Fe(VI) concentration, agitation speed, and temperature significantly enhances sulfur reduction. The study underscores the potential of using potassium ferrate derived from drinking water treatment sludge in MAOD for effective desulfurization and provides insights into the impact of operating conditions on desulfurization efficiency. Ultimately, the research contributes to advancing environmentally friendly and cost-effective desulfurization technologies. [Display omitted] •Mixing assisted oxidative desulfurization was applied to waste tire pyrolysis oil.•Ferrate (Fe(VI)) oxidant was derived from drinking water treatment sludge.•Fe(VI) concentration was found significant in the optimization analysis.•The maximum DBT conversion in model fuel reached 99.6 % under Box–Behnken design.•Pyrolysis oil desulfurization reached 53.2 % using optimal parameters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jclepro.2024.143307</doi><orcidid>https://orcid.org/0000-0003-4332-9538</orcidid><orcidid>https://orcid.org/0000-0001-5497-3121</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-6526
ispartof Journal of cleaner production, 2024-09, Vol.470, p.143307, Article 143307
issn 0959-6526
language eng
recordid cdi_proquest_miscellaneous_3153712471
source Elsevier ScienceDirect Journals
subjects agitation
cost effectiveness
desulfurization
Dibenzothiophene
Ferrate
human health
Mixing-assisted oxidative desulfurization
oxidation
potassium
Pyrolysis oil
pyrolysis oils
response surface methodology
Sludge
sulfur
temperature
Waste tires
water treatment
title Enhancing oxidative desulfurization using sludge-derived ferrate (VI) for dibenzothiophene: An optimization study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20oxidative%20desulfurization%20using%20sludge-derived%20ferrate%20(VI)%20for%20dibenzothiophene:%20An%20optimization%20study&rft.jtitle=Journal%20of%20cleaner%20production&rft.au=Haboc,%20Micah%20M.&rft.date=2024-09-10&rft.volume=470&rft.spage=143307&rft.pages=143307-&rft.artnum=143307&rft.issn=0959-6526&rft_id=info:doi/10.1016/j.jclepro.2024.143307&rft_dat=%3Cproquest_cross%3E3153712471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153712471&rft_id=info:pmid/&rft_els_id=S0959652624027562&rfr_iscdi=true