SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee

•SPME-GC-MS for detection of fraud in roasted and ground coffee.•Potential chemical markers of the most common adulterants in coffee fraud.•Chemometrics analysis indicate volatile compounds as possible markers for food fraud. Roasted ground coffee has been intentionally adulterated for economic reve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2024-07, Vol.446, p.138862-138862, Article 138862
Hauptverfasser: Couto, Cinthia de Carvalho, Chávez, Davy William Hidalgo, Oliveira, Edna Maria Morais, Freitas-Silva, Otniel, Casal, Susana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138862
container_issue
container_start_page 138862
container_title Food chemistry
container_volume 446
creator Couto, Cinthia de Carvalho
Chávez, Davy William Hidalgo
Oliveira, Edna Maria Morais
Freitas-Silva, Otniel
Casal, Susana
description •SPME-GC-MS for detection of fraud in roasted and ground coffee.•Potential chemical markers of the most common adulterants in coffee fraud.•Chemometrics analysis indicate volatile compounds as possible markers for food fraud. Roasted ground coffee has been intentionally adulterated for economic revenue. This work aims to use an untargeted strategy to process SPME-GC-MS data coupled with chemometrics to identify volatile compounds (VOCs) as possible markers to discriminate Arabica coffee and its main adulterants (corn, barley, soybean, rice, coffee husks, and Robusta coffee). Principal Component Analysis (PCA) showed the difference between roasted ground coffee and adulterants, while the Hierarchical Clustering of Principal Components (HCPC) and heat map showed a trend of adulterants separation. The partial Least-Squares Discriminant Analysis (PLS-DA) approach confirmed the PCA results. Finally, 24 VOCs were putatively identified, and 11 VOCs are candidates for potential markers to detect coffee fraud, found exclusively in one type of adulterant: coffee husks, soybean, and rice. The results for possible markers may be suitable for evaluating the authenticity of ground-roasted coffee, thus acting as a coffee fraud control and prevention tool.
doi_str_mv 10.1016/j.foodchem.2024.138862
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153711286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814624005119</els_id><sourcerecordid>2937335138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-4d954c33c3d69323e0e0cd56ec9cd30893ad19d267c8f8746bddbcf1d6f852f73</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EokPhFSov2WTqS2I7O9CoLZVagVRYWx77uPWQxMF2KvUteGQcTcu2K3vxX3T-D6EzSraUUHF-2PoYnX2AccsIa7eUKyXYG7ShSvJGEsneog3hRDWKtuIEfcj5QAhhhKr36ISrlhMpuw36e_fj9qK52jW3d3iZikn3UMDhEYrZxyGOwWZs5jlFYx9wiTg4mErwT3iOZf2ZAT_GwZQwALZxnOMyuerIeDTpN6SMfUzYJ7M47GqyLSFOOEy4Bua1yEwO36fVVe3eA3xE77wZMnx6fk_Rr8uLn7tvzc33q-vd15vGtoSWpnV911rOLXei54wDAWJdJ8D21tWze24c7R0T0iqvZCv2zu2tp0541TEv-Sn6fMytt_1ZIBc9hmxhGMwEccma045LSpkSr0pZzyXnXUVQpeIotSnmnMDrOYU6xZOmRK_g9EG_gNMrOH0EV41nzx3LfgT33_ZCqgq-HAVQR3kMkHS2ASYLLqQ6q3YxvNbxD4Xhr2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937335138</pqid></control><display><type>article</type><title>SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Couto, Cinthia de Carvalho ; Chávez, Davy William Hidalgo ; Oliveira, Edna Maria Morais ; Freitas-Silva, Otniel ; Casal, Susana</creator><creatorcontrib>Couto, Cinthia de Carvalho ; Chávez, Davy William Hidalgo ; Oliveira, Edna Maria Morais ; Freitas-Silva, Otniel ; Casal, Susana</creatorcontrib><description>•SPME-GC-MS for detection of fraud in roasted and ground coffee.•Potential chemical markers of the most common adulterants in coffee fraud.•Chemometrics analysis indicate volatile compounds as possible markers for food fraud. Roasted ground coffee has been intentionally adulterated for economic revenue. This work aims to use an untargeted strategy to process SPME-GC-MS data coupled with chemometrics to identify volatile compounds (VOCs) as possible markers to discriminate Arabica coffee and its main adulterants (corn, barley, soybean, rice, coffee husks, and Robusta coffee). Principal Component Analysis (PCA) showed the difference between roasted ground coffee and adulterants, while the Hierarchical Clustering of Principal Components (HCPC) and heat map showed a trend of adulterants separation. The partial Least-Squares Discriminant Analysis (PLS-DA) approach confirmed the PCA results. Finally, 24 VOCs were putatively identified, and 11 VOCs are candidates for potential markers to detect coffee fraud, found exclusively in one type of adulterant: coffee husks, soybean, and rice. The results for possible markers may be suitable for evaluating the authenticity of ground-roasted coffee, thus acting as a coffee fraud control and prevention tool.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2024.138862</identifier><identifier>PMID: 38430775</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>adulterants ; Adulteration ; Authenticity ; barley ; Cereal ; chemometrics ; Chromatography ; Coffea ; Coffea arabica ; Coffea canephora ; corn ; discriminant analysis ; food chemistry ; fraud ; Gas Chromatography-Mass Spectrometry ; Glycine max ; heat ; income ; least squares ; Least-Squares Analysis ; metabolomics ; principal component analysis ; rice ; Seeds ; Solid Phase Microextraction ; soybeans</subject><ispartof>Food chemistry, 2024-07, Vol.446, p.138862-138862, Article 138862</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-4d954c33c3d69323e0e0cd56ec9cd30893ad19d267c8f8746bddbcf1d6f852f73</citedby><cites>FETCH-LOGICAL-c401t-4d954c33c3d69323e0e0cd56ec9cd30893ad19d267c8f8746bddbcf1d6f852f73</cites><orcidid>0000-0002-7658-8010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0308814624005119$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38430775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Couto, Cinthia de Carvalho</creatorcontrib><creatorcontrib>Chávez, Davy William Hidalgo</creatorcontrib><creatorcontrib>Oliveira, Edna Maria Morais</creatorcontrib><creatorcontrib>Freitas-Silva, Otniel</creatorcontrib><creatorcontrib>Casal, Susana</creatorcontrib><title>SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee</title><title>Food chemistry</title><addtitle>Food Chem</addtitle><description>•SPME-GC-MS for detection of fraud in roasted and ground coffee.•Potential chemical markers of the most common adulterants in coffee fraud.•Chemometrics analysis indicate volatile compounds as possible markers for food fraud. Roasted ground coffee has been intentionally adulterated for economic revenue. This work aims to use an untargeted strategy to process SPME-GC-MS data coupled with chemometrics to identify volatile compounds (VOCs) as possible markers to discriminate Arabica coffee and its main adulterants (corn, barley, soybean, rice, coffee husks, and Robusta coffee). Principal Component Analysis (PCA) showed the difference between roasted ground coffee and adulterants, while the Hierarchical Clustering of Principal Components (HCPC) and heat map showed a trend of adulterants separation. The partial Least-Squares Discriminant Analysis (PLS-DA) approach confirmed the PCA results. Finally, 24 VOCs were putatively identified, and 11 VOCs are candidates for potential markers to detect coffee fraud, found exclusively in one type of adulterant: coffee husks, soybean, and rice. The results for possible markers may be suitable for evaluating the authenticity of ground-roasted coffee, thus acting as a coffee fraud control and prevention tool.</description><subject>adulterants</subject><subject>Adulteration</subject><subject>Authenticity</subject><subject>barley</subject><subject>Cereal</subject><subject>chemometrics</subject><subject>Chromatography</subject><subject>Coffea</subject><subject>Coffea arabica</subject><subject>Coffea canephora</subject><subject>corn</subject><subject>discriminant analysis</subject><subject>food chemistry</subject><subject>fraud</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Glycine max</subject><subject>heat</subject><subject>income</subject><subject>least squares</subject><subject>Least-Squares Analysis</subject><subject>metabolomics</subject><subject>principal component analysis</subject><subject>rice</subject><subject>Seeds</subject><subject>Solid Phase Microextraction</subject><subject>soybeans</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhi0EokPhFSov2WTqS2I7O9CoLZVagVRYWx77uPWQxMF2KvUteGQcTcu2K3vxX3T-D6EzSraUUHF-2PoYnX2AccsIa7eUKyXYG7ShSvJGEsneog3hRDWKtuIEfcj5QAhhhKr36ISrlhMpuw36e_fj9qK52jW3d3iZikn3UMDhEYrZxyGOwWZs5jlFYx9wiTg4mErwT3iOZf2ZAT_GwZQwALZxnOMyuerIeDTpN6SMfUzYJ7M47GqyLSFOOEy4Bua1yEwO36fVVe3eA3xE77wZMnx6fk_Rr8uLn7tvzc33q-vd15vGtoSWpnV911rOLXei54wDAWJdJ8D21tWze24c7R0T0iqvZCv2zu2tp0541TEv-Sn6fMytt_1ZIBc9hmxhGMwEccma045LSpkSr0pZzyXnXUVQpeIotSnmnMDrOYU6xZOmRK_g9EG_gNMrOH0EV41nzx3LfgT33_ZCqgq-HAVQR3kMkHS2ASYLLqQ6q3YxvNbxD4Xhr2Q</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Couto, Cinthia de Carvalho</creator><creator>Chávez, Davy William Hidalgo</creator><creator>Oliveira, Edna Maria Morais</creator><creator>Freitas-Silva, Otniel</creator><creator>Casal, Susana</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7658-8010</orcidid></search><sort><creationdate>20240715</creationdate><title>SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee</title><author>Couto, Cinthia de Carvalho ; Chávez, Davy William Hidalgo ; Oliveira, Edna Maria Morais ; Freitas-Silva, Otniel ; Casal, Susana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-4d954c33c3d69323e0e0cd56ec9cd30893ad19d267c8f8746bddbcf1d6f852f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adulterants</topic><topic>Adulteration</topic><topic>Authenticity</topic><topic>barley</topic><topic>Cereal</topic><topic>chemometrics</topic><topic>Chromatography</topic><topic>Coffea</topic><topic>Coffea arabica</topic><topic>Coffea canephora</topic><topic>corn</topic><topic>discriminant analysis</topic><topic>food chemistry</topic><topic>fraud</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Glycine max</topic><topic>heat</topic><topic>income</topic><topic>least squares</topic><topic>Least-Squares Analysis</topic><topic>metabolomics</topic><topic>principal component analysis</topic><topic>rice</topic><topic>Seeds</topic><topic>Solid Phase Microextraction</topic><topic>soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Couto, Cinthia de Carvalho</creatorcontrib><creatorcontrib>Chávez, Davy William Hidalgo</creatorcontrib><creatorcontrib>Oliveira, Edna Maria Morais</creatorcontrib><creatorcontrib>Freitas-Silva, Otniel</creatorcontrib><creatorcontrib>Casal, Susana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Couto, Cinthia de Carvalho</au><au>Chávez, Davy William Hidalgo</au><au>Oliveira, Edna Maria Morais</au><au>Freitas-Silva, Otniel</au><au>Casal, Susana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee</atitle><jtitle>Food chemistry</jtitle><addtitle>Food Chem</addtitle><date>2024-07-15</date><risdate>2024</risdate><volume>446</volume><spage>138862</spage><epage>138862</epage><pages>138862-138862</pages><artnum>138862</artnum><issn>0308-8146</issn><eissn>1873-7072</eissn><abstract>•SPME-GC-MS for detection of fraud in roasted and ground coffee.•Potential chemical markers of the most common adulterants in coffee fraud.•Chemometrics analysis indicate volatile compounds as possible markers for food fraud. Roasted ground coffee has been intentionally adulterated for economic revenue. This work aims to use an untargeted strategy to process SPME-GC-MS data coupled with chemometrics to identify volatile compounds (VOCs) as possible markers to discriminate Arabica coffee and its main adulterants (corn, barley, soybean, rice, coffee husks, and Robusta coffee). Principal Component Analysis (PCA) showed the difference between roasted ground coffee and adulterants, while the Hierarchical Clustering of Principal Components (HCPC) and heat map showed a trend of adulterants separation. The partial Least-Squares Discriminant Analysis (PLS-DA) approach confirmed the PCA results. Finally, 24 VOCs were putatively identified, and 11 VOCs are candidates for potential markers to detect coffee fraud, found exclusively in one type of adulterant: coffee husks, soybean, and rice. The results for possible markers may be suitable for evaluating the authenticity of ground-roasted coffee, thus acting as a coffee fraud control and prevention tool.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38430775</pmid><doi>10.1016/j.foodchem.2024.138862</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7658-8010</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0308-8146
ispartof Food chemistry, 2024-07, Vol.446, p.138862-138862, Article 138862
issn 0308-8146
1873-7072
language eng
recordid cdi_proquest_miscellaneous_3153711286
source MEDLINE; Elsevier ScienceDirect Journals
subjects adulterants
Adulteration
Authenticity
barley
Cereal
chemometrics
Chromatography
Coffea
Coffea arabica
Coffea canephora
corn
discriminant analysis
food chemistry
fraud
Gas Chromatography-Mass Spectrometry
Glycine max
heat
income
least squares
Least-Squares Analysis
metabolomics
principal component analysis
rice
Seeds
Solid Phase Microextraction
soybeans
title SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPME-GC-MS%20untargeted%20metabolomics%20approach%20to%20identify%20potential%20volatile%20compounds%20as%20markers%20for%20fraud%20detection%20in%20roasted%20and%20ground%20coffee&rft.jtitle=Food%20chemistry&rft.au=Couto,%20Cinthia%20de%20Carvalho&rft.date=2024-07-15&rft.volume=446&rft.spage=138862&rft.epage=138862&rft.pages=138862-138862&rft.artnum=138862&rft.issn=0308-8146&rft.eissn=1873-7072&rft_id=info:doi/10.1016/j.foodchem.2024.138862&rft_dat=%3Cproquest_cross%3E2937335138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937335138&rft_id=info:pmid/38430775&rft_els_id=S0308814624005119&rfr_iscdi=true