Microwave-Assisted Oxidative Degradation of Poly(vinylidene fluoride-co-hexafluoropropylene) Copolymers: Preparation, Characterization, and Reaction Mechanism

This study focuses on the synthesizing of liquid-terminated carboxyl fluoropolymers (LTCFs) from poly­(vinylidene fluoride-co-hexafluoropropylene) (P­(VDF-HFP)) through microwave (MW)-assisted oxidative degradation. An in-depth analysis was conducted on the preparation process, the duration of MW ir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2024-08, Vol.57 (15), p.7003-7012
Hauptverfasser: Qi, Ranran, Gao, Mengli, Gan, Ziwen, Liao, Mingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7012
container_issue 15
container_start_page 7003
container_title Macromolecules
container_volume 57
creator Qi, Ranran
Gao, Mengli
Gan, Ziwen
Liao, Mingyi
description This study focuses on the synthesizing of liquid-terminated carboxyl fluoropolymers (LTCFs) from poly­(vinylidene fluoride-co-hexafluoropropylene) (P­(VDF-HFP)) through microwave (MW)-assisted oxidative degradation. An in-depth analysis was conducted on the preparation process, the duration of MW irradiation, and the resulting changes in LTCFs. Chemical titration and gel permeation chromatography (GPC) revealed that the MW-assisted oxidative degradation was achieved in 150–240 s, which is several orders of magnitude shorter than heat (CH) oxidative degradation. The modifications in the structure of CC and CO bonds within LTCFs were investigated over a time range of 0 to 900 s using Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectrophotometry (UV–vis), and 19F nuclear magnetic resonance (19F-NMR). The analysis reveals that the dehydrofluorination reaction primarily occurs on the HFP-VDF-HFP sequence, resulting in two sequence structures: CCZaitsev and CCHofmann. The dehydrofluorination of the P­(VDF-HFP) copolymer followed Zaitsev’s rule mainly and Hofmann’s rule slightly. Furthermore, it was observed that the processes of CC bond formation (KHF reaction) and conversion (KC–C reaction) are in competition. When H2O2 is enough, the degradation of the P­(VDF-HFP) copolymer predominantly follows the KC–C reaction and partially the KHF reaction. The opposite is true for low H2O2 concentrations. To conclude, this study suggests a mechanism for the synthesis of LTCFs using MW-assisted oxidative degradation of P­(VDF-HFP). Under MW, the C atom adjacent to a CC bond readily undergoes autocatalytic KHF reactions, creating conjugated polyene sequences of certain lengths. Meanwhile, the rapid degradation of H2O2 expedites CC oxidative breaking, producing the COOH functional groups.
doi_str_mv 10.1021/acs.macromol.3c02403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153710381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153710381</sourcerecordid><originalsourceid>FETCH-LOGICAL-a204t-c75eabaac9a9f10c8285f3ef0b2e0fbcf0c148bb5250602fe7f46472dc57f6e63</originalsourceid><addsrcrecordid>eNp9UcFO4zAQtRArUVj-gIOPrETK2I6bdG-osIAEAq2WczRxxtQoiYudFrofw7euS8t1JUt-82bezNiPsRMBYwFSnKOJ4w5N8J1vx8qAzEHtsZHQEjJdKr3PRpDIbCqnxQE7jPEFQAidqxH7uHdJ94Yryi5idHGghj-8uwYHtyJ-Sc8BN9j33Fv-6Nv16cr169Y11BO37dKHBDPjszm942fsF-ms25T_wWd-kSQdhfiTPwZaYPjsdcZn8wTNQMH93THYN_w3JW4z657MHHsXu-_sm8U20vHuPmJPv67-zG6yu4fr29nFXYYS8iEzhSasEc0Up1aAKWWprSILtSSwtbFgRF7WtZYaJiAtFTaf5IVsjC7shCbqiJ1u-6blX5cUh6pz0VDbYk9-GSsltCoEqFKk0nxbmv4txkC2WgTXYVhXAqqNHVWyo_qyo9rZkWSwlW2yL34Z-vSe_0v-AQBrl4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153710381</pqid></control><display><type>article</type><title>Microwave-Assisted Oxidative Degradation of Poly(vinylidene fluoride-co-hexafluoropropylene) Copolymers: Preparation, Characterization, and Reaction Mechanism</title><source>ACS Publications</source><creator>Qi, Ranran ; Gao, Mengli ; Gan, Ziwen ; Liao, Mingyi</creator><creatorcontrib>Qi, Ranran ; Gao, Mengli ; Gan, Ziwen ; Liao, Mingyi</creatorcontrib><description>This study focuses on the synthesizing of liquid-terminated carboxyl fluoropolymers (LTCFs) from poly­(vinylidene fluoride-co-hexafluoropropylene) (P­(VDF-HFP)) through microwave (MW)-assisted oxidative degradation. An in-depth analysis was conducted on the preparation process, the duration of MW irradiation, and the resulting changes in LTCFs. Chemical titration and gel permeation chromatography (GPC) revealed that the MW-assisted oxidative degradation was achieved in 150–240 s, which is several orders of magnitude shorter than heat (CH) oxidative degradation. The modifications in the structure of CC and CO bonds within LTCFs were investigated over a time range of 0 to 900 s using Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectrophotometry (UV–vis), and 19F nuclear magnetic resonance (19F-NMR). The analysis reveals that the dehydrofluorination reaction primarily occurs on the HFP-VDF-HFP sequence, resulting in two sequence structures: CCZaitsev and CCHofmann. The dehydrofluorination of the P­(VDF-HFP) copolymer followed Zaitsev’s rule mainly and Hofmann’s rule slightly. Furthermore, it was observed that the processes of CC bond formation (KHF reaction) and conversion (KC–C reaction) are in competition. When H2O2 is enough, the degradation of the P­(VDF-HFP) copolymer predominantly follows the KC–C reaction and partially the KHF reaction. The opposite is true for low H2O2 concentrations. To conclude, this study suggests a mechanism for the synthesis of LTCFs using MW-assisted oxidative degradation of P­(VDF-HFP). Under MW, the C atom adjacent to a CC bond readily undergoes autocatalytic KHF reactions, creating conjugated polyene sequences of certain lengths. Meanwhile, the rapid degradation of H2O2 expedites CC oxidative breaking, producing the COOH functional groups.</description><identifier>ISSN: 0024-9297</identifier><identifier>ISSN: 1520-5835</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.3c02403</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>composite polymers ; Fourier transform infrared spectroscopy ; gel chromatography ; heat ; irradiation ; microwave treatment ; nuclear magnetic resonance spectroscopy ; reaction mechanisms ; titration ; ultraviolet-visible spectroscopy</subject><ispartof>Macromolecules, 2024-08, Vol.57 (15), p.7003-7012</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a204t-c75eabaac9a9f10c8285f3ef0b2e0fbcf0c148bb5250602fe7f46472dc57f6e63</cites><orcidid>0000-0001-7506-3987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.macromol.3c02403$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.macromol.3c02403$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Qi, Ranran</creatorcontrib><creatorcontrib>Gao, Mengli</creatorcontrib><creatorcontrib>Gan, Ziwen</creatorcontrib><creatorcontrib>Liao, Mingyi</creatorcontrib><title>Microwave-Assisted Oxidative Degradation of Poly(vinylidene fluoride-co-hexafluoropropylene) Copolymers: Preparation, Characterization, and Reaction Mechanism</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>This study focuses on the synthesizing of liquid-terminated carboxyl fluoropolymers (LTCFs) from poly­(vinylidene fluoride-co-hexafluoropropylene) (P­(VDF-HFP)) through microwave (MW)-assisted oxidative degradation. An in-depth analysis was conducted on the preparation process, the duration of MW irradiation, and the resulting changes in LTCFs. Chemical titration and gel permeation chromatography (GPC) revealed that the MW-assisted oxidative degradation was achieved in 150–240 s, which is several orders of magnitude shorter than heat (CH) oxidative degradation. The modifications in the structure of CC and CO bonds within LTCFs were investigated over a time range of 0 to 900 s using Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectrophotometry (UV–vis), and 19F nuclear magnetic resonance (19F-NMR). The analysis reveals that the dehydrofluorination reaction primarily occurs on the HFP-VDF-HFP sequence, resulting in two sequence structures: CCZaitsev and CCHofmann. The dehydrofluorination of the P­(VDF-HFP) copolymer followed Zaitsev’s rule mainly and Hofmann’s rule slightly. Furthermore, it was observed that the processes of CC bond formation (KHF reaction) and conversion (KC–C reaction) are in competition. When H2O2 is enough, the degradation of the P­(VDF-HFP) copolymer predominantly follows the KC–C reaction and partially the KHF reaction. The opposite is true for low H2O2 concentrations. To conclude, this study suggests a mechanism for the synthesis of LTCFs using MW-assisted oxidative degradation of P­(VDF-HFP). Under MW, the C atom adjacent to a CC bond readily undergoes autocatalytic KHF reactions, creating conjugated polyene sequences of certain lengths. Meanwhile, the rapid degradation of H2O2 expedites CC oxidative breaking, producing the COOH functional groups.</description><subject>composite polymers</subject><subject>Fourier transform infrared spectroscopy</subject><subject>gel chromatography</subject><subject>heat</subject><subject>irradiation</subject><subject>microwave treatment</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>reaction mechanisms</subject><subject>titration</subject><subject>ultraviolet-visible spectroscopy</subject><issn>0024-9297</issn><issn>1520-5835</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UcFO4zAQtRArUVj-gIOPrETK2I6bdG-osIAEAq2WczRxxtQoiYudFrofw7euS8t1JUt-82bezNiPsRMBYwFSnKOJ4w5N8J1vx8qAzEHtsZHQEjJdKr3PRpDIbCqnxQE7jPEFQAidqxH7uHdJ94Yryi5idHGghj-8uwYHtyJ-Sc8BN9j33Fv-6Nv16cr169Y11BO37dKHBDPjszm942fsF-ms25T_wWd-kSQdhfiTPwZaYPjsdcZn8wTNQMH93THYN_w3JW4z657MHHsXu-_sm8U20vHuPmJPv67-zG6yu4fr29nFXYYS8iEzhSasEc0Up1aAKWWprSILtSSwtbFgRF7WtZYaJiAtFTaf5IVsjC7shCbqiJ1u-6blX5cUh6pz0VDbYk9-GSsltCoEqFKk0nxbmv4txkC2WgTXYVhXAqqNHVWyo_qyo9rZkWSwlW2yL34Z-vSe_0v-AQBrl4k</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Qi, Ranran</creator><creator>Gao, Mengli</creator><creator>Gan, Ziwen</creator><creator>Liao, Mingyi</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7506-3987</orcidid></search><sort><creationdate>20240813</creationdate><title>Microwave-Assisted Oxidative Degradation of Poly(vinylidene fluoride-co-hexafluoropropylene) Copolymers: Preparation, Characterization, and Reaction Mechanism</title><author>Qi, Ranran ; Gao, Mengli ; Gan, Ziwen ; Liao, Mingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a204t-c75eabaac9a9f10c8285f3ef0b2e0fbcf0c148bb5250602fe7f46472dc57f6e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>composite polymers</topic><topic>Fourier transform infrared spectroscopy</topic><topic>gel chromatography</topic><topic>heat</topic><topic>irradiation</topic><topic>microwave treatment</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>reaction mechanisms</topic><topic>titration</topic><topic>ultraviolet-visible spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Ranran</creatorcontrib><creatorcontrib>Gao, Mengli</creatorcontrib><creatorcontrib>Gan, Ziwen</creatorcontrib><creatorcontrib>Liao, Mingyi</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Ranran</au><au>Gao, Mengli</au><au>Gan, Ziwen</au><au>Liao, Mingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave-Assisted Oxidative Degradation of Poly(vinylidene fluoride-co-hexafluoropropylene) Copolymers: Preparation, Characterization, and Reaction Mechanism</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2024-08-13</date><risdate>2024</risdate><volume>57</volume><issue>15</issue><spage>7003</spage><epage>7012</epage><pages>7003-7012</pages><issn>0024-9297</issn><issn>1520-5835</issn><eissn>1520-5835</eissn><abstract>This study focuses on the synthesizing of liquid-terminated carboxyl fluoropolymers (LTCFs) from poly­(vinylidene fluoride-co-hexafluoropropylene) (P­(VDF-HFP)) through microwave (MW)-assisted oxidative degradation. An in-depth analysis was conducted on the preparation process, the duration of MW irradiation, and the resulting changes in LTCFs. Chemical titration and gel permeation chromatography (GPC) revealed that the MW-assisted oxidative degradation was achieved in 150–240 s, which is several orders of magnitude shorter than heat (CH) oxidative degradation. The modifications in the structure of CC and CO bonds within LTCFs were investigated over a time range of 0 to 900 s using Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectrophotometry (UV–vis), and 19F nuclear magnetic resonance (19F-NMR). The analysis reveals that the dehydrofluorination reaction primarily occurs on the HFP-VDF-HFP sequence, resulting in two sequence structures: CCZaitsev and CCHofmann. The dehydrofluorination of the P­(VDF-HFP) copolymer followed Zaitsev’s rule mainly and Hofmann’s rule slightly. Furthermore, it was observed that the processes of CC bond formation (KHF reaction) and conversion (KC–C reaction) are in competition. When H2O2 is enough, the degradation of the P­(VDF-HFP) copolymer predominantly follows the KC–C reaction and partially the KHF reaction. The opposite is true for low H2O2 concentrations. To conclude, this study suggests a mechanism for the synthesis of LTCFs using MW-assisted oxidative degradation of P­(VDF-HFP). Under MW, the C atom adjacent to a CC bond readily undergoes autocatalytic KHF reactions, creating conjugated polyene sequences of certain lengths. Meanwhile, the rapid degradation of H2O2 expedites CC oxidative breaking, producing the COOH functional groups.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.3c02403</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7506-3987</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2024-08, Vol.57 (15), p.7003-7012
issn 0024-9297
1520-5835
1520-5835
language eng
recordid cdi_proquest_miscellaneous_3153710381
source ACS Publications
subjects composite polymers
Fourier transform infrared spectroscopy
gel chromatography
heat
irradiation
microwave treatment
nuclear magnetic resonance spectroscopy
reaction mechanisms
titration
ultraviolet-visible spectroscopy
title Microwave-Assisted Oxidative Degradation of Poly(vinylidene fluoride-co-hexafluoropropylene) Copolymers: Preparation, Characterization, and Reaction Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave-Assisted%20Oxidative%20Degradation%20of%20Poly(vinylidene%20fluoride-co-hexafluoropropylene)%20Copolymers:%20Preparation,%20Characterization,%20and%20Reaction%20Mechanism&rft.jtitle=Macromolecules&rft.au=Qi,%20Ranran&rft.date=2024-08-13&rft.volume=57&rft.issue=15&rft.spage=7003&rft.epage=7012&rft.pages=7003-7012&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.3c02403&rft_dat=%3Cproquest_cross%3E3153710381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153710381&rft_id=info:pmid/&rfr_iscdi=true