Plastic-degrading microbial communities reveal novel microorganisms, pathways, and biocatalysts for polymer degradation and bioplastic production

Plastics derived from fossil fuels are used ubiquitously owing to their exceptional physicochemical characteristics. However, the extensive and short-term use of plastics has caused environmental challenges. The biotechnological plastic conversion can help address the challenges related to plastic p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-11, Vol.949, p.174876, Article 174876
Hauptverfasser: Roman, Ellen Karen Barreto, Ramos, Murilo Antonio, Tomazetto, Geizecler, Foltran, Bruno Botega, Galvão, Matheus Henrique, Ciancaglini, Iara, Tramontina, Robson, de Almeida Rodrigues, Felipe, da Silva, Larissa Soares, Sandano, Ana Luiza Hernandes, Fernandes, Diógenes G. da S., Almeida, Dnane Vieira, Baldo, Denicezar Angelo, de Oliveira Junior, José Martins, Garcia, Wanius, Damasio, André, Squina, Fabio Marcio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 174876
container_title The Science of the total environment
container_volume 949
creator Roman, Ellen Karen Barreto
Ramos, Murilo Antonio
Tomazetto, Geizecler
Foltran, Bruno Botega
Galvão, Matheus Henrique
Ciancaglini, Iara
Tramontina, Robson
de Almeida Rodrigues, Felipe
da Silva, Larissa Soares
Sandano, Ana Luiza Hernandes
Fernandes, Diógenes G. da S.
Almeida, Dnane Vieira
Baldo, Denicezar Angelo
de Oliveira Junior, José Martins
Garcia, Wanius
Damasio, André
Squina, Fabio Marcio
description Plastics derived from fossil fuels are used ubiquitously owing to their exceptional physicochemical characteristics. However, the extensive and short-term use of plastics has caused environmental challenges. The biotechnological plastic conversion can help address the challenges related to plastic pollution, offering sustainable alternatives that can operate using bioeconomic concepts and promote socioeconomic benefits. In this context, using soil from a plastic-contaminated landfill, two consortia were established (ConsPlastic-A and -B) displaying versatility in developing and consuming polyethylene or polyethylene terephthalate as the carbon source of nutrition. The ConsPlastic-A and -B metagenomic sequencing, taxonomic profiling, and the reconstruction of 79 draft bacterial genomes significantly expanded the knowledge of plastic-degrading microorganisms and enzymes, disclosing novel taxonomic groups associated with polymer degradation. The microbial consortium was utilized to obtain a novel Pseudomonas putida strain (BR4), presenting a striking metabolic arsenal for aromatic compound degradation and assimilation, confirmed by genomic analyses. The BR4 displays the inherent capacity to degrade polyethylene terephthalate (PET) and produce polyhydroxybutyrate (PHB) containing hydroxyvalerate (HV) units that contribute to enhanced copolymer properties, such as increased flexibility and resistance to breakage, compared with pure PHB. Therefore, BR4 is a promising strain for developing a bioconsolidated plastic depolymerization and upcycling process. Collectively, our study provides insights that may extend beyond the artificial ecosystems established during our experiments and supports future strategies for effectively decomposing and valorizing plastic waste. Furthermore, the functional genomic analysis described herein serves as a valuable guide for elucidating the genetic potential of microbial communities and microorganisms in plastic deconstruction and upcycling. Representation of the metagenomic discovery strategy applied in the present study, including the establishment of the two polyethylene-degrading consortia, genetic characterization, and applications (i) for PET degradation and (ii) isolation of biotechnological strains. [Display omitted] •Two polyethylene-degrading consortia were developed using plastic-contaminated soil.•Massive functional genomics data on plastic-degrading biocatalysts and pathways.•Disclosing novel taxonomic groups associate
doi_str_mv 10.1016/j.scitotenv.2024.174876
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153709863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969724050253</els_id><sourcerecordid>3153709863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-15563e4abda969112e2839134eb60ec4f44658689daefc3ca6822be76388011b3</originalsourceid><addsrcrecordid>eNqFkcFu3CAQhlGVqtmkfYWGYw71FowN-BhFbRIpUntozwjDeMvKBgfwVvsYfeOycpJruIDgm_nFfAhdUbKlhPKv-20yLocM_rCtSd1sqWik4O_QhkrRVZTU_AxtCGlk1fFOnKOLlPakLCHpB3TOOsIFJ3SD_v0cdcrOVBZ2UVvnd3hyJobe6RGbME2Ld9lBwhEOUK58OMC4IiHutHdpSl_wrPOfv_pYTtpb3LtgdNbjMeWEhxDxHMbjBBGvGTq74F_AeY3Hcwx2MaeXj-j9oMcEn573S_T7-7dft_fV44-7h9ubx8rUkuSKti1n0Oje6vJDSmuoJesoa6DnBEwzNA1vJZed1TAYZjSXdd2D4ExKQmnPLtH12rdEPy2QsppcMjCO2kNYkmK0ZYJ0krO3USJbLlvGeEHFipYBpRRhUHN0k45HRYk6qVN79apOndSpVV2p_PwcsvQT2Ne6F1cFuFkBKFM5OIinRuANWBfBZGWDezPkP4-Vsps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085685336</pqid></control><display><type>article</type><title>Plastic-degrading microbial communities reveal novel microorganisms, pathways, and biocatalysts for polymer degradation and bioplastic production</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Roman, Ellen Karen Barreto ; Ramos, Murilo Antonio ; Tomazetto, Geizecler ; Foltran, Bruno Botega ; Galvão, Matheus Henrique ; Ciancaglini, Iara ; Tramontina, Robson ; de Almeida Rodrigues, Felipe ; da Silva, Larissa Soares ; Sandano, Ana Luiza Hernandes ; Fernandes, Diógenes G. da S. ; Almeida, Dnane Vieira ; Baldo, Denicezar Angelo ; de Oliveira Junior, José Martins ; Garcia, Wanius ; Damasio, André ; Squina, Fabio Marcio</creator><creatorcontrib>Roman, Ellen Karen Barreto ; Ramos, Murilo Antonio ; Tomazetto, Geizecler ; Foltran, Bruno Botega ; Galvão, Matheus Henrique ; Ciancaglini, Iara ; Tramontina, Robson ; de Almeida Rodrigues, Felipe ; da Silva, Larissa Soares ; Sandano, Ana Luiza Hernandes ; Fernandes, Diógenes G. da S. ; Almeida, Dnane Vieira ; Baldo, Denicezar Angelo ; de Oliveira Junior, José Martins ; Garcia, Wanius ; Damasio, André ; Squina, Fabio Marcio</creatorcontrib><description>Plastics derived from fossil fuels are used ubiquitously owing to their exceptional physicochemical characteristics. However, the extensive and short-term use of plastics has caused environmental challenges. The biotechnological plastic conversion can help address the challenges related to plastic pollution, offering sustainable alternatives that can operate using bioeconomic concepts and promote socioeconomic benefits. In this context, using soil from a plastic-contaminated landfill, two consortia were established (ConsPlastic-A and -B) displaying versatility in developing and consuming polyethylene or polyethylene terephthalate as the carbon source of nutrition. The ConsPlastic-A and -B metagenomic sequencing, taxonomic profiling, and the reconstruction of 79 draft bacterial genomes significantly expanded the knowledge of plastic-degrading microorganisms and enzymes, disclosing novel taxonomic groups associated with polymer degradation. The microbial consortium was utilized to obtain a novel Pseudomonas putida strain (BR4), presenting a striking metabolic arsenal for aromatic compound degradation and assimilation, confirmed by genomic analyses. The BR4 displays the inherent capacity to degrade polyethylene terephthalate (PET) and produce polyhydroxybutyrate (PHB) containing hydroxyvalerate (HV) units that contribute to enhanced copolymer properties, such as increased flexibility and resistance to breakage, compared with pure PHB. Therefore, BR4 is a promising strain for developing a bioconsolidated plastic depolymerization and upcycling process. Collectively, our study provides insights that may extend beyond the artificial ecosystems established during our experiments and supports future strategies for effectively decomposing and valorizing plastic waste. Furthermore, the functional genomic analysis described herein serves as a valuable guide for elucidating the genetic potential of microbial communities and microorganisms in plastic deconstruction and upcycling. Representation of the metagenomic discovery strategy applied in the present study, including the establishment of the two polyethylene-degrading consortia, genetic characterization, and applications (i) for PET degradation and (ii) isolation of biotechnological strains. [Display omitted] •Two polyethylene-degrading consortia were developed using plastic-contaminated soil.•Massive functional genomics data on plastic-degrading biocatalysts and pathways.•Disclosing novel taxonomic groups associated with polymer degradation.•Novel strain (BR4) with robust catabolism for aromatics and anabolism for bioplastic.•Findings support novel approaches to biotechnological plastic conversion.</description><identifier>ISSN: 0048-9697</identifier><identifier>ISSN: 1879-1026</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2024.174876</identifier><identifier>PMID: 39067601</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>aromatic compounds ; Bacteria - genetics ; Bacteria - metabolism ; Biodegradable Plastics - metabolism ; Biodegradation, Environmental ; bioeconomics ; bioplastics ; carbon ; composite polymers ; depolymerization ; environment ; genetic traits ; genome ; landfills ; Metagenomics ; Microbial Consortia ; Microbiota ; nutrition ; Plastic-degrading enzymes ; Plastic-degrading microorganisms ; Plastics - metabolism ; pollution ; polyethylene ; polyethylene terephthalates ; Polyethylene Terephthalates - metabolism ; Polyhydroxybutyrate ; Polymers - metabolism ; Pseudomonas putida ; Pseudomonas putida - genetics ; Pseudomonas putida - metabolism ; soil ; Soil Microbiology ; Soil Pollutants - metabolism ; wastes</subject><ispartof>The Science of the total environment, 2024-11, Vol.949, p.174876, Article 174876</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-15563e4abda969112e2839134eb60ec4f44658689daefc3ca6822be76388011b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969724050253$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39067601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roman, Ellen Karen Barreto</creatorcontrib><creatorcontrib>Ramos, Murilo Antonio</creatorcontrib><creatorcontrib>Tomazetto, Geizecler</creatorcontrib><creatorcontrib>Foltran, Bruno Botega</creatorcontrib><creatorcontrib>Galvão, Matheus Henrique</creatorcontrib><creatorcontrib>Ciancaglini, Iara</creatorcontrib><creatorcontrib>Tramontina, Robson</creatorcontrib><creatorcontrib>de Almeida Rodrigues, Felipe</creatorcontrib><creatorcontrib>da Silva, Larissa Soares</creatorcontrib><creatorcontrib>Sandano, Ana Luiza Hernandes</creatorcontrib><creatorcontrib>Fernandes, Diógenes G. da S.</creatorcontrib><creatorcontrib>Almeida, Dnane Vieira</creatorcontrib><creatorcontrib>Baldo, Denicezar Angelo</creatorcontrib><creatorcontrib>de Oliveira Junior, José Martins</creatorcontrib><creatorcontrib>Garcia, Wanius</creatorcontrib><creatorcontrib>Damasio, André</creatorcontrib><creatorcontrib>Squina, Fabio Marcio</creatorcontrib><title>Plastic-degrading microbial communities reveal novel microorganisms, pathways, and biocatalysts for polymer degradation and bioplastic production</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Plastics derived from fossil fuels are used ubiquitously owing to their exceptional physicochemical characteristics. However, the extensive and short-term use of plastics has caused environmental challenges. The biotechnological plastic conversion can help address the challenges related to plastic pollution, offering sustainable alternatives that can operate using bioeconomic concepts and promote socioeconomic benefits. In this context, using soil from a plastic-contaminated landfill, two consortia were established (ConsPlastic-A and -B) displaying versatility in developing and consuming polyethylene or polyethylene terephthalate as the carbon source of nutrition. The ConsPlastic-A and -B metagenomic sequencing, taxonomic profiling, and the reconstruction of 79 draft bacterial genomes significantly expanded the knowledge of plastic-degrading microorganisms and enzymes, disclosing novel taxonomic groups associated with polymer degradation. The microbial consortium was utilized to obtain a novel Pseudomonas putida strain (BR4), presenting a striking metabolic arsenal for aromatic compound degradation and assimilation, confirmed by genomic analyses. The BR4 displays the inherent capacity to degrade polyethylene terephthalate (PET) and produce polyhydroxybutyrate (PHB) containing hydroxyvalerate (HV) units that contribute to enhanced copolymer properties, such as increased flexibility and resistance to breakage, compared with pure PHB. Therefore, BR4 is a promising strain for developing a bioconsolidated plastic depolymerization and upcycling process. Collectively, our study provides insights that may extend beyond the artificial ecosystems established during our experiments and supports future strategies for effectively decomposing and valorizing plastic waste. Furthermore, the functional genomic analysis described herein serves as a valuable guide for elucidating the genetic potential of microbial communities and microorganisms in plastic deconstruction and upcycling. Representation of the metagenomic discovery strategy applied in the present study, including the establishment of the two polyethylene-degrading consortia, genetic characterization, and applications (i) for PET degradation and (ii) isolation of biotechnological strains. [Display omitted] •Two polyethylene-degrading consortia were developed using plastic-contaminated soil.•Massive functional genomics data on plastic-degrading biocatalysts and pathways.•Disclosing novel taxonomic groups associated with polymer degradation.•Novel strain (BR4) with robust catabolism for aromatics and anabolism for bioplastic.•Findings support novel approaches to biotechnological plastic conversion.</description><subject>aromatic compounds</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biodegradable Plastics - metabolism</subject><subject>Biodegradation, Environmental</subject><subject>bioeconomics</subject><subject>bioplastics</subject><subject>carbon</subject><subject>composite polymers</subject><subject>depolymerization</subject><subject>environment</subject><subject>genetic traits</subject><subject>genome</subject><subject>landfills</subject><subject>Metagenomics</subject><subject>Microbial Consortia</subject><subject>Microbiota</subject><subject>nutrition</subject><subject>Plastic-degrading enzymes</subject><subject>Plastic-degrading microorganisms</subject><subject>Plastics - metabolism</subject><subject>pollution</subject><subject>polyethylene</subject><subject>polyethylene terephthalates</subject><subject>Polyethylene Terephthalates - metabolism</subject><subject>Polyhydroxybutyrate</subject><subject>Polymers - metabolism</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - genetics</subject><subject>Pseudomonas putida - metabolism</subject><subject>soil</subject><subject>Soil Microbiology</subject><subject>Soil Pollutants - metabolism</subject><subject>wastes</subject><issn>0048-9697</issn><issn>1879-1026</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu3CAQhlGVqtmkfYWGYw71FowN-BhFbRIpUntozwjDeMvKBgfwVvsYfeOycpJruIDgm_nFfAhdUbKlhPKv-20yLocM_rCtSd1sqWik4O_QhkrRVZTU_AxtCGlk1fFOnKOLlPakLCHpB3TOOsIFJ3SD_v0cdcrOVBZ2UVvnd3hyJobe6RGbME2Ld9lBwhEOUK58OMC4IiHutHdpSl_wrPOfv_pYTtpb3LtgdNbjMeWEhxDxHMbjBBGvGTq74F_AeY3Hcwx2MaeXj-j9oMcEn573S_T7-7dft_fV44-7h9ubx8rUkuSKti1n0Oje6vJDSmuoJesoa6DnBEwzNA1vJZed1TAYZjSXdd2D4ExKQmnPLtH12rdEPy2QsppcMjCO2kNYkmK0ZYJ0krO3USJbLlvGeEHFipYBpRRhUHN0k45HRYk6qVN79apOndSpVV2p_PwcsvQT2Ne6F1cFuFkBKFM5OIinRuANWBfBZGWDezPkP4-Vsps</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Roman, Ellen Karen Barreto</creator><creator>Ramos, Murilo Antonio</creator><creator>Tomazetto, Geizecler</creator><creator>Foltran, Bruno Botega</creator><creator>Galvão, Matheus Henrique</creator><creator>Ciancaglini, Iara</creator><creator>Tramontina, Robson</creator><creator>de Almeida Rodrigues, Felipe</creator><creator>da Silva, Larissa Soares</creator><creator>Sandano, Ana Luiza Hernandes</creator><creator>Fernandes, Diógenes G. da S.</creator><creator>Almeida, Dnane Vieira</creator><creator>Baldo, Denicezar Angelo</creator><creator>de Oliveira Junior, José Martins</creator><creator>Garcia, Wanius</creator><creator>Damasio, André</creator><creator>Squina, Fabio Marcio</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241101</creationdate><title>Plastic-degrading microbial communities reveal novel microorganisms, pathways, and biocatalysts for polymer degradation and bioplastic production</title><author>Roman, Ellen Karen Barreto ; Ramos, Murilo Antonio ; Tomazetto, Geizecler ; Foltran, Bruno Botega ; Galvão, Matheus Henrique ; Ciancaglini, Iara ; Tramontina, Robson ; de Almeida Rodrigues, Felipe ; da Silva, Larissa Soares ; Sandano, Ana Luiza Hernandes ; Fernandes, Diógenes G. da S. ; Almeida, Dnane Vieira ; Baldo, Denicezar Angelo ; de Oliveira Junior, José Martins ; Garcia, Wanius ; Damasio, André ; Squina, Fabio Marcio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-15563e4abda969112e2839134eb60ec4f44658689daefc3ca6822be76388011b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aromatic compounds</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biodegradable Plastics - metabolism</topic><topic>Biodegradation, Environmental</topic><topic>bioeconomics</topic><topic>bioplastics</topic><topic>carbon</topic><topic>composite polymers</topic><topic>depolymerization</topic><topic>environment</topic><topic>genetic traits</topic><topic>genome</topic><topic>landfills</topic><topic>Metagenomics</topic><topic>Microbial Consortia</topic><topic>Microbiota</topic><topic>nutrition</topic><topic>Plastic-degrading enzymes</topic><topic>Plastic-degrading microorganisms</topic><topic>Plastics - metabolism</topic><topic>pollution</topic><topic>polyethylene</topic><topic>polyethylene terephthalates</topic><topic>Polyethylene Terephthalates - metabolism</topic><topic>Polyhydroxybutyrate</topic><topic>Polymers - metabolism</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - genetics</topic><topic>Pseudomonas putida - metabolism</topic><topic>soil</topic><topic>Soil Microbiology</topic><topic>Soil Pollutants - metabolism</topic><topic>wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roman, Ellen Karen Barreto</creatorcontrib><creatorcontrib>Ramos, Murilo Antonio</creatorcontrib><creatorcontrib>Tomazetto, Geizecler</creatorcontrib><creatorcontrib>Foltran, Bruno Botega</creatorcontrib><creatorcontrib>Galvão, Matheus Henrique</creatorcontrib><creatorcontrib>Ciancaglini, Iara</creatorcontrib><creatorcontrib>Tramontina, Robson</creatorcontrib><creatorcontrib>de Almeida Rodrigues, Felipe</creatorcontrib><creatorcontrib>da Silva, Larissa Soares</creatorcontrib><creatorcontrib>Sandano, Ana Luiza Hernandes</creatorcontrib><creatorcontrib>Fernandes, Diógenes G. da S.</creatorcontrib><creatorcontrib>Almeida, Dnane Vieira</creatorcontrib><creatorcontrib>Baldo, Denicezar Angelo</creatorcontrib><creatorcontrib>de Oliveira Junior, José Martins</creatorcontrib><creatorcontrib>Garcia, Wanius</creatorcontrib><creatorcontrib>Damasio, André</creatorcontrib><creatorcontrib>Squina, Fabio Marcio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roman, Ellen Karen Barreto</au><au>Ramos, Murilo Antonio</au><au>Tomazetto, Geizecler</au><au>Foltran, Bruno Botega</au><au>Galvão, Matheus Henrique</au><au>Ciancaglini, Iara</au><au>Tramontina, Robson</au><au>de Almeida Rodrigues, Felipe</au><au>da Silva, Larissa Soares</au><au>Sandano, Ana Luiza Hernandes</au><au>Fernandes, Diógenes G. da S.</au><au>Almeida, Dnane Vieira</au><au>Baldo, Denicezar Angelo</au><au>de Oliveira Junior, José Martins</au><au>Garcia, Wanius</au><au>Damasio, André</au><au>Squina, Fabio Marcio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastic-degrading microbial communities reveal novel microorganisms, pathways, and biocatalysts for polymer degradation and bioplastic production</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>949</volume><spage>174876</spage><pages>174876-</pages><artnum>174876</artnum><issn>0048-9697</issn><issn>1879-1026</issn><eissn>1879-1026</eissn><abstract>Plastics derived from fossil fuels are used ubiquitously owing to their exceptional physicochemical characteristics. However, the extensive and short-term use of plastics has caused environmental challenges. The biotechnological plastic conversion can help address the challenges related to plastic pollution, offering sustainable alternatives that can operate using bioeconomic concepts and promote socioeconomic benefits. In this context, using soil from a plastic-contaminated landfill, two consortia were established (ConsPlastic-A and -B) displaying versatility in developing and consuming polyethylene or polyethylene terephthalate as the carbon source of nutrition. The ConsPlastic-A and -B metagenomic sequencing, taxonomic profiling, and the reconstruction of 79 draft bacterial genomes significantly expanded the knowledge of plastic-degrading microorganisms and enzymes, disclosing novel taxonomic groups associated with polymer degradation. The microbial consortium was utilized to obtain a novel Pseudomonas putida strain (BR4), presenting a striking metabolic arsenal for aromatic compound degradation and assimilation, confirmed by genomic analyses. The BR4 displays the inherent capacity to degrade polyethylene terephthalate (PET) and produce polyhydroxybutyrate (PHB) containing hydroxyvalerate (HV) units that contribute to enhanced copolymer properties, such as increased flexibility and resistance to breakage, compared with pure PHB. Therefore, BR4 is a promising strain for developing a bioconsolidated plastic depolymerization and upcycling process. Collectively, our study provides insights that may extend beyond the artificial ecosystems established during our experiments and supports future strategies for effectively decomposing and valorizing plastic waste. Furthermore, the functional genomic analysis described herein serves as a valuable guide for elucidating the genetic potential of microbial communities and microorganisms in plastic deconstruction and upcycling. Representation of the metagenomic discovery strategy applied in the present study, including the establishment of the two polyethylene-degrading consortia, genetic characterization, and applications (i) for PET degradation and (ii) isolation of biotechnological strains. [Display omitted] •Two polyethylene-degrading consortia were developed using plastic-contaminated soil.•Massive functional genomics data on plastic-degrading biocatalysts and pathways.•Disclosing novel taxonomic groups associated with polymer degradation.•Novel strain (BR4) with robust catabolism for aromatics and anabolism for bioplastic.•Findings support novel approaches to biotechnological plastic conversion.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39067601</pmid><doi>10.1016/j.scitotenv.2024.174876</doi></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2024-11, Vol.949, p.174876, Article 174876
issn 0048-9697
1879-1026
1879-1026
language eng
recordid cdi_proquest_miscellaneous_3153709863
source MEDLINE; Elsevier ScienceDirect Journals
subjects aromatic compounds
Bacteria - genetics
Bacteria - metabolism
Biodegradable Plastics - metabolism
Biodegradation, Environmental
bioeconomics
bioplastics
carbon
composite polymers
depolymerization
environment
genetic traits
genome
landfills
Metagenomics
Microbial Consortia
Microbiota
nutrition
Plastic-degrading enzymes
Plastic-degrading microorganisms
Plastics - metabolism
pollution
polyethylene
polyethylene terephthalates
Polyethylene Terephthalates - metabolism
Polyhydroxybutyrate
Polymers - metabolism
Pseudomonas putida
Pseudomonas putida - genetics
Pseudomonas putida - metabolism
soil
Soil Microbiology
Soil Pollutants - metabolism
wastes
title Plastic-degrading microbial communities reveal novel microorganisms, pathways, and biocatalysts for polymer degradation and bioplastic production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastic-degrading%20microbial%20communities%20reveal%20novel%20microorganisms,%20pathways,%20and%20biocatalysts%20for%20polymer%20degradation%20and%20bioplastic%20production&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Roman,%20Ellen%20Karen%20Barreto&rft.date=2024-11-01&rft.volume=949&rft.spage=174876&rft.pages=174876-&rft.artnum=174876&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2024.174876&rft_dat=%3Cproquest_cross%3E3153709863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085685336&rft_id=info:pmid/39067601&rft_els_id=S0048969724050253&rfr_iscdi=true