Electric-field assisted cascade reactions to create alginate/carboxymethyl chitosan composite hydrogels with gradient architecture and reconfigurable mechanical properties

Rational designs of polysaccharide-based hydrogels with organ-like three-dimensional architecture provide a great possibility for addressing the shortages of allograft tissues and organs. However, spatial-temporal control over structure in bulk hydrogel and acquire satisfied mechanical properties re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2024-12, Vol.346, p.122609, Article 122609
Hauptverfasser: Yan, Kun, Chen, Ding, Guo, Xiaoming, Wan, Yekai, Yang, Chenguang, Wang, Wenwen, Li, Xiufang, Lu, Zhentan, Wang, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122609
container_title Carbohydrate polymers
container_volume 346
creator Yan, Kun
Chen, Ding
Guo, Xiaoming
Wan, Yekai
Yang, Chenguang
Wang, Wenwen
Li, Xiufang
Lu, Zhentan
Wang, Dong
description Rational designs of polysaccharide-based hydrogels with organ-like three-dimensional architecture provide a great possibility for addressing the shortages of allograft tissues and organs. However, spatial-temporal control over structure in bulk hydrogel and acquire satisfied mechanical properties remain an intrinsic challenge to achieve. Here, we show how electric-field assisted molecular self-assembly can be coupled to a directional reaction-diffusion (RD) process to produce macroscopic hydrogel in a controllable manner. The electrical energy input was not only to generate complex molecule gradients and initiate the molecular self-assembly, but also to guide/facilitate the RD processes for the gel rapid growth via a cascade construction interaction. The hydrogel mechanical properties can be tuned and enhanced by using an interpenetrating biopolymer network and multiple ionic crosslinkers, leading to a wide-range of mechanical modulus to match with biological organs or tissues. We demonstrate diverse 3D macroscopic hydrogels can be easily prepared via field-assisted directional reaction-diffusion and specific joint interactions. The humility-triggered dissipation of functional gradients and antibacterial performance confirm that the hydrogels can serve as an optically variable soft device for wound management. Therefore, this work provides a general approach toward the rational fabrication of soft hydrogels with controlled architectures and functionality for advanced biomedical systems. [Display omitted]
doi_str_mv 10.1016/j.carbpol.2024.122609
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153700909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014486172400835X</els_id><sourcerecordid>3102069966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-d2ac7b0942919d6232e1e008b38dd04dfd7e26a7770ea22cda3e9ca6edaab7093</originalsourceid><addsrcrecordid>eNqNkcGO0zAQhiMEYrsLjwDykUu6tpM69Qmh1QIrrcQFztZkPGlcOXGwXdg-Ey-JqxauMBePpW_mH_1_Vb0RfC24ULf7NULsl-DXkst2LaRUXD-rVmLb6Vo0bfu8WnHRtvVWie6quk5pz0spwV9WV42W7WYj5ar6de8Jc3RYD468ZZCSS5ksQ0gIllgkwOzCnFgODMsvEwO_c3Npbk8nhKfjRHk8eoajyyHBzDBMS0iukOPRxrAjn9hPl0e2i2AdzZlBPMFF-RDLutkWGQzz4HaHCL0nNhGOMDsEz5YYForZUXpVvRjAJ3p9eW-qbx_vv959rh-_fHq4-_BYY9OqXFsJ2PVct1ILbZVsJAnifNs3W2t5awfbkVTQdR0nkBItNKQRFFmAvuO6uanenfcW6e8HStlMLiF5DzOFQzKN2DQd5_q_UC650lqpgm7OKMaQUqTBLNFNEI9GcHOK1OzNJVJzitScIy1zby8Sh34i-3fqT4YFeH8Gis30w1E0CYvJSNYVV7Oxwf1D4jfwwbrR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102069966</pqid></control><display><type>article</type><title>Electric-field assisted cascade reactions to create alginate/carboxymethyl chitosan composite hydrogels with gradient architecture and reconfigurable mechanical properties</title><source>Elsevier ScienceDirect Journals</source><creator>Yan, Kun ; Chen, Ding ; Guo, Xiaoming ; Wan, Yekai ; Yang, Chenguang ; Wang, Wenwen ; Li, Xiufang ; Lu, Zhentan ; Wang, Dong</creator><creatorcontrib>Yan, Kun ; Chen, Ding ; Guo, Xiaoming ; Wan, Yekai ; Yang, Chenguang ; Wang, Wenwen ; Li, Xiufang ; Lu, Zhentan ; Wang, Dong</creatorcontrib><description>Rational designs of polysaccharide-based hydrogels with organ-like three-dimensional architecture provide a great possibility for addressing the shortages of allograft tissues and organs. However, spatial-temporal control over structure in bulk hydrogel and acquire satisfied mechanical properties remain an intrinsic challenge to achieve. Here, we show how electric-field assisted molecular self-assembly can be coupled to a directional reaction-diffusion (RD) process to produce macroscopic hydrogel in a controllable manner. The electrical energy input was not only to generate complex molecule gradients and initiate the molecular self-assembly, but also to guide/facilitate the RD processes for the gel rapid growth via a cascade construction interaction. The hydrogel mechanical properties can be tuned and enhanced by using an interpenetrating biopolymer network and multiple ionic crosslinkers, leading to a wide-range of mechanical modulus to match with biological organs or tissues. We demonstrate diverse 3D macroscopic hydrogels can be easily prepared via field-assisted directional reaction-diffusion and specific joint interactions. The humility-triggered dissipation of functional gradients and antibacterial performance confirm that the hydrogels can serve as an optically variable soft device for wound management. Therefore, this work provides a general approach toward the rational fabrication of soft hydrogels with controlled architectures and functionality for advanced biomedical systems. [Display omitted]</description><identifier>ISSN: 0144-8617</identifier><identifier>ISSN: 1879-1344</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2024.122609</identifier><identifier>PMID: 39245522</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>alginates ; allografting ; biopolymers ; Cascade reactions ; chitosan ; Composite hydrogels ; Diffusion reaction ; electric power ; Electric-field ; Gradient architecture ; hydrogels ; wound treatment</subject><ispartof>Carbohydrate polymers, 2024-12, Vol.346, p.122609, Article 122609</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-d2ac7b0942919d6232e1e008b38dd04dfd7e26a7770ea22cda3e9ca6edaab7093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014486172400835X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39245522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Kun</creatorcontrib><creatorcontrib>Chen, Ding</creatorcontrib><creatorcontrib>Guo, Xiaoming</creatorcontrib><creatorcontrib>Wan, Yekai</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><creatorcontrib>Wang, Wenwen</creatorcontrib><creatorcontrib>Li, Xiufang</creatorcontrib><creatorcontrib>Lu, Zhentan</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><title>Electric-field assisted cascade reactions to create alginate/carboxymethyl chitosan composite hydrogels with gradient architecture and reconfigurable mechanical properties</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>Rational designs of polysaccharide-based hydrogels with organ-like three-dimensional architecture provide a great possibility for addressing the shortages of allograft tissues and organs. However, spatial-temporal control over structure in bulk hydrogel and acquire satisfied mechanical properties remain an intrinsic challenge to achieve. Here, we show how electric-field assisted molecular self-assembly can be coupled to a directional reaction-diffusion (RD) process to produce macroscopic hydrogel in a controllable manner. The electrical energy input was not only to generate complex molecule gradients and initiate the molecular self-assembly, but also to guide/facilitate the RD processes for the gel rapid growth via a cascade construction interaction. The hydrogel mechanical properties can be tuned and enhanced by using an interpenetrating biopolymer network and multiple ionic crosslinkers, leading to a wide-range of mechanical modulus to match with biological organs or tissues. We demonstrate diverse 3D macroscopic hydrogels can be easily prepared via field-assisted directional reaction-diffusion and specific joint interactions. The humility-triggered dissipation of functional gradients and antibacterial performance confirm that the hydrogels can serve as an optically variable soft device for wound management. Therefore, this work provides a general approach toward the rational fabrication of soft hydrogels with controlled architectures and functionality for advanced biomedical systems. [Display omitted]</description><subject>alginates</subject><subject>allografting</subject><subject>biopolymers</subject><subject>Cascade reactions</subject><subject>chitosan</subject><subject>Composite hydrogels</subject><subject>Diffusion reaction</subject><subject>electric power</subject><subject>Electric-field</subject><subject>Gradient architecture</subject><subject>hydrogels</subject><subject>wound treatment</subject><issn>0144-8617</issn><issn>1879-1344</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkcGO0zAQhiMEYrsLjwDykUu6tpM69Qmh1QIrrcQFztZkPGlcOXGwXdg-Ey-JqxauMBePpW_mH_1_Vb0RfC24ULf7NULsl-DXkst2LaRUXD-rVmLb6Vo0bfu8WnHRtvVWie6quk5pz0spwV9WV42W7WYj5ar6de8Jc3RYD468ZZCSS5ksQ0gIllgkwOzCnFgODMsvEwO_c3Npbk8nhKfjRHk8eoajyyHBzDBMS0iukOPRxrAjn9hPl0e2i2AdzZlBPMFF-RDLutkWGQzz4HaHCL0nNhGOMDsEz5YYForZUXpVvRjAJ3p9eW-qbx_vv959rh-_fHq4-_BYY9OqXFsJ2PVct1ILbZVsJAnifNs3W2t5awfbkVTQdR0nkBItNKQRFFmAvuO6uanenfcW6e8HStlMLiF5DzOFQzKN2DQd5_q_UC650lqpgm7OKMaQUqTBLNFNEI9GcHOK1OzNJVJzitScIy1zby8Sh34i-3fqT4YFeH8Gis30w1E0CYvJSNYVV7Oxwf1D4jfwwbrR</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Yan, Kun</creator><creator>Chen, Ding</creator><creator>Guo, Xiaoming</creator><creator>Wan, Yekai</creator><creator>Yang, Chenguang</creator><creator>Wang, Wenwen</creator><creator>Li, Xiufang</creator><creator>Lu, Zhentan</creator><creator>Wang, Dong</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241215</creationdate><title>Electric-field assisted cascade reactions to create alginate/carboxymethyl chitosan composite hydrogels with gradient architecture and reconfigurable mechanical properties</title><author>Yan, Kun ; Chen, Ding ; Guo, Xiaoming ; Wan, Yekai ; Yang, Chenguang ; Wang, Wenwen ; Li, Xiufang ; Lu, Zhentan ; Wang, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-d2ac7b0942919d6232e1e008b38dd04dfd7e26a7770ea22cda3e9ca6edaab7093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alginates</topic><topic>allografting</topic><topic>biopolymers</topic><topic>Cascade reactions</topic><topic>chitosan</topic><topic>Composite hydrogels</topic><topic>Diffusion reaction</topic><topic>electric power</topic><topic>Electric-field</topic><topic>Gradient architecture</topic><topic>hydrogels</topic><topic>wound treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Kun</creatorcontrib><creatorcontrib>Chen, Ding</creatorcontrib><creatorcontrib>Guo, Xiaoming</creatorcontrib><creatorcontrib>Wan, Yekai</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><creatorcontrib>Wang, Wenwen</creatorcontrib><creatorcontrib>Li, Xiufang</creatorcontrib><creatorcontrib>Lu, Zhentan</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Kun</au><au>Chen, Ding</au><au>Guo, Xiaoming</au><au>Wan, Yekai</au><au>Yang, Chenguang</au><au>Wang, Wenwen</au><au>Li, Xiufang</au><au>Lu, Zhentan</au><au>Wang, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric-field assisted cascade reactions to create alginate/carboxymethyl chitosan composite hydrogels with gradient architecture and reconfigurable mechanical properties</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2024-12-15</date><risdate>2024</risdate><volume>346</volume><spage>122609</spage><pages>122609-</pages><artnum>122609</artnum><issn>0144-8617</issn><issn>1879-1344</issn><eissn>1879-1344</eissn><abstract>Rational designs of polysaccharide-based hydrogels with organ-like three-dimensional architecture provide a great possibility for addressing the shortages of allograft tissues and organs. However, spatial-temporal control over structure in bulk hydrogel and acquire satisfied mechanical properties remain an intrinsic challenge to achieve. Here, we show how electric-field assisted molecular self-assembly can be coupled to a directional reaction-diffusion (RD) process to produce macroscopic hydrogel in a controllable manner. The electrical energy input was not only to generate complex molecule gradients and initiate the molecular self-assembly, but also to guide/facilitate the RD processes for the gel rapid growth via a cascade construction interaction. The hydrogel mechanical properties can be tuned and enhanced by using an interpenetrating biopolymer network and multiple ionic crosslinkers, leading to a wide-range of mechanical modulus to match with biological organs or tissues. We demonstrate diverse 3D macroscopic hydrogels can be easily prepared via field-assisted directional reaction-diffusion and specific joint interactions. The humility-triggered dissipation of functional gradients and antibacterial performance confirm that the hydrogels can serve as an optically variable soft device for wound management. Therefore, this work provides a general approach toward the rational fabrication of soft hydrogels with controlled architectures and functionality for advanced biomedical systems. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39245522</pmid><doi>10.1016/j.carbpol.2024.122609</doi></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2024-12, Vol.346, p.122609, Article 122609
issn 0144-8617
1879-1344
1879-1344
language eng
recordid cdi_proquest_miscellaneous_3153700909
source Elsevier ScienceDirect Journals
subjects alginates
allografting
biopolymers
Cascade reactions
chitosan
Composite hydrogels
Diffusion reaction
electric power
Electric-field
Gradient architecture
hydrogels
wound treatment
title Electric-field assisted cascade reactions to create alginate/carboxymethyl chitosan composite hydrogels with gradient architecture and reconfigurable mechanical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric-field%20assisted%20cascade%20reactions%20to%20create%20alginate/carboxymethyl%20chitosan%20composite%20hydrogels%20with%20gradient%20architecture%20and%20reconfigurable%20mechanical%20properties&rft.jtitle=Carbohydrate%20polymers&rft.au=Yan,%20Kun&rft.date=2024-12-15&rft.volume=346&rft.spage=122609&rft.pages=122609-&rft.artnum=122609&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2024.122609&rft_dat=%3Cproquest_cross%3E3102069966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102069966&rft_id=info:pmid/39245522&rft_els_id=S014486172400835X&rfr_iscdi=true