Functionalization of CO2‑Derived Carbon Support as a Pathway to Enhancing the Oxygen Reduction Reaction Performance of Pt Electrocatalysts

Proton-exchange membrane fuel cells (PEMFCs) hold promise for clean energy generation, but their commercialization is partially hindered by the sluggish oxygen reduction reaction (ORR) at the cathode, which relies on costly Pt electrocatalysts supported by petroleum-derived carbon. This study invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2024-08, Vol.38 (16), p.15601-15610
Hauptverfasser: Najafli, Erkin, Ratso, Sander, Foroozan, Amir, Noor, Navid, Higgins, Drew C., Kruusenberg, Ivar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15610
container_issue 16
container_start_page 15601
container_title Energy & fuels
container_volume 38
creator Najafli, Erkin
Ratso, Sander
Foroozan, Amir
Noor, Navid
Higgins, Drew C.
Kruusenberg, Ivar
description Proton-exchange membrane fuel cells (PEMFCs) hold promise for clean energy generation, but their commercialization is partially hindered by the sluggish oxygen reduction reaction (ORR) at the cathode, which relies on costly Pt electrocatalysts supported by petroleum-derived carbon. This study investigates a CO2-derived carbon (CO2–C) material as a sustainable alternative to petroleum-derived carbon and attempts to enhance the ORR performance of Pt electrocatalyst with the CO2–C support by pretreatment with hydrogen peroxide (H2O2) and potassium hydroxide (KOH) solutions. Based on physical characterization results, both KOH and H2O2 pretreatments of CO2–C increased the Brunauer–Emmett–Teller (BET) surface area and improved the metal–support interaction compared to untreated CO2–C. Electrochemical characterization revealed superior ORR performance of Pt/H2O2–CO2–C, exhibiting higher mass activity (142.8 mA mgPt –1) compared to Pt/CO2–C (102 mA mgPt –1), while Pt/KOH–CO2–C showed the highest specific activity (1503.8 μA cmPt –2) among the studied samples. Thus, Pt electrocatalysts with pretreated CO2–C support are presented as an alternative to conventional Pt/C catalysts toward sustainable and high-performance PEMFCs.
doi_str_mv 10.1021/acs.energyfuels.4c02407
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153699276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153699276</sourcerecordid><originalsourceid>FETCH-LOGICAL-a162t-21eff52d4eb0b8adbd530cb1d38f73282d776c1a8764cb76aec9c1a7d05332503</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwDPjIJcU_SZwcUWgBqVIrfs7Rxtm0qdK42A5QTjwAF16RJyGlHDjt7Gg0I32EnHM24kzwS9BuhC3axbbqsHGjUDMRMnVABjwSLIiYSA_JgCWJClgswmNy4tyKMRbLJBqQz0nXal-bFpr6HXaCmopmM_H98XWNtn7BkmZgi95_6DYbYz0FR4HOwS9fYUu9oeN2Ca2u2wX1S6Szt-0CW3qPZffb2yvYiznayth1n8XdxtzTcYPaW6PBQ7N13p2Sowoah2d_d0ieJuPH7DaYzm7usqtpADwWPhAcqyoSZYgFKxIoizKSTBe8lEmlpEhEqVSsOSQqDnWhYkCd9q8qWSSliJgckot978aa5w6dz9e109g00KLpXC55JOM0FSruo3If7THnK9PZHpTLOct37POd-Y99_sde_gCdT4Bc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153699276</pqid></control><display><type>article</type><title>Functionalization of CO2‑Derived Carbon Support as a Pathway to Enhancing the Oxygen Reduction Reaction Performance of Pt Electrocatalysts</title><source>ACS Publications</source><creator>Najafli, Erkin ; Ratso, Sander ; Foroozan, Amir ; Noor, Navid ; Higgins, Drew C. ; Kruusenberg, Ivar</creator><creatorcontrib>Najafli, Erkin ; Ratso, Sander ; Foroozan, Amir ; Noor, Navid ; Higgins, Drew C. ; Kruusenberg, Ivar</creatorcontrib><description>Proton-exchange membrane fuel cells (PEMFCs) hold promise for clean energy generation, but their commercialization is partially hindered by the sluggish oxygen reduction reaction (ORR) at the cathode, which relies on costly Pt electrocatalysts supported by petroleum-derived carbon. This study investigates a CO2-derived carbon (CO2–C) material as a sustainable alternative to petroleum-derived carbon and attempts to enhance the ORR performance of Pt electrocatalyst with the CO2–C support by pretreatment with hydrogen peroxide (H2O2) and potassium hydroxide (KOH) solutions. Based on physical characterization results, both KOH and H2O2 pretreatments of CO2–C increased the Brunauer–Emmett–Teller (BET) surface area and improved the metal–support interaction compared to untreated CO2–C. Electrochemical characterization revealed superior ORR performance of Pt/H2O2–CO2–C, exhibiting higher mass activity (142.8 mA mgPt –1) compared to Pt/CO2–C (102 mA mgPt –1), while Pt/KOH–CO2–C showed the highest specific activity (1503.8 μA cmPt –2) among the studied samples. Thus, Pt electrocatalysts with pretreated CO2–C support are presented as an alternative to conventional Pt/C catalysts toward sustainable and high-performance PEMFCs.</description><identifier>ISSN: 0887-0624</identifier><identifier>ISSN: 1520-5029</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.4c02407</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>carbon ; Catalysis and Kinetics ; cathodes ; clean energy ; commercialization ; electrochemistry ; energy ; fuels ; hydrogen peroxide ; physical properties ; potassium hydroxide ; surface area</subject><ispartof>Energy &amp; fuels, 2024-08, Vol.38 (16), p.15601-15610</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9873-3795 ; 0000-0002-0585-2670 ; 0000-0002-8199-9324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.4c02407$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02407$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Najafli, Erkin</creatorcontrib><creatorcontrib>Ratso, Sander</creatorcontrib><creatorcontrib>Foroozan, Amir</creatorcontrib><creatorcontrib>Noor, Navid</creatorcontrib><creatorcontrib>Higgins, Drew C.</creatorcontrib><creatorcontrib>Kruusenberg, Ivar</creatorcontrib><title>Functionalization of CO2‑Derived Carbon Support as a Pathway to Enhancing the Oxygen Reduction Reaction Performance of Pt Electrocatalysts</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Proton-exchange membrane fuel cells (PEMFCs) hold promise for clean energy generation, but their commercialization is partially hindered by the sluggish oxygen reduction reaction (ORR) at the cathode, which relies on costly Pt electrocatalysts supported by petroleum-derived carbon. This study investigates a CO2-derived carbon (CO2–C) material as a sustainable alternative to petroleum-derived carbon and attempts to enhance the ORR performance of Pt electrocatalyst with the CO2–C support by pretreatment with hydrogen peroxide (H2O2) and potassium hydroxide (KOH) solutions. Based on physical characterization results, both KOH and H2O2 pretreatments of CO2–C increased the Brunauer–Emmett–Teller (BET) surface area and improved the metal–support interaction compared to untreated CO2–C. Electrochemical characterization revealed superior ORR performance of Pt/H2O2–CO2–C, exhibiting higher mass activity (142.8 mA mgPt –1) compared to Pt/CO2–C (102 mA mgPt –1), while Pt/KOH–CO2–C showed the highest specific activity (1503.8 μA cmPt –2) among the studied samples. Thus, Pt electrocatalysts with pretreated CO2–C support are presented as an alternative to conventional Pt/C catalysts toward sustainable and high-performance PEMFCs.</description><subject>carbon</subject><subject>Catalysis and Kinetics</subject><subject>cathodes</subject><subject>clean energy</subject><subject>commercialization</subject><subject>electrochemistry</subject><subject>energy</subject><subject>fuels</subject><subject>hydrogen peroxide</subject><subject>physical properties</subject><subject>potassium hydroxide</subject><subject>surface area</subject><issn>0887-0624</issn><issn>1520-5029</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EEqXwDPjIJcU_SZwcUWgBqVIrfs7Rxtm0qdK42A5QTjwAF16RJyGlHDjt7Gg0I32EnHM24kzwS9BuhC3axbbqsHGjUDMRMnVABjwSLIiYSA_JgCWJClgswmNy4tyKMRbLJBqQz0nXal-bFpr6HXaCmopmM_H98XWNtn7BkmZgi95_6DYbYz0FR4HOwS9fYUu9oeN2Ca2u2wX1S6Szt-0CW3qPZffb2yvYiznayth1n8XdxtzTcYPaW6PBQ7N13p2Sowoah2d_d0ieJuPH7DaYzm7usqtpADwWPhAcqyoSZYgFKxIoizKSTBe8lEmlpEhEqVSsOSQqDnWhYkCd9q8qWSSliJgckot978aa5w6dz9e109g00KLpXC55JOM0FSruo3If7THnK9PZHpTLOct37POd-Y99_sde_gCdT4Bc</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Najafli, Erkin</creator><creator>Ratso, Sander</creator><creator>Foroozan, Amir</creator><creator>Noor, Navid</creator><creator>Higgins, Drew C.</creator><creator>Kruusenberg, Ivar</creator><general>American Chemical Society</general><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9873-3795</orcidid><orcidid>https://orcid.org/0000-0002-0585-2670</orcidid><orcidid>https://orcid.org/0000-0002-8199-9324</orcidid></search><sort><creationdate>20240806</creationdate><title>Functionalization of CO2‑Derived Carbon Support as a Pathway to Enhancing the Oxygen Reduction Reaction Performance of Pt Electrocatalysts</title><author>Najafli, Erkin ; Ratso, Sander ; Foroozan, Amir ; Noor, Navid ; Higgins, Drew C. ; Kruusenberg, Ivar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a162t-21eff52d4eb0b8adbd530cb1d38f73282d776c1a8764cb76aec9c1a7d05332503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>carbon</topic><topic>Catalysis and Kinetics</topic><topic>cathodes</topic><topic>clean energy</topic><topic>commercialization</topic><topic>electrochemistry</topic><topic>energy</topic><topic>fuels</topic><topic>hydrogen peroxide</topic><topic>physical properties</topic><topic>potassium hydroxide</topic><topic>surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najafli, Erkin</creatorcontrib><creatorcontrib>Ratso, Sander</creatorcontrib><creatorcontrib>Foroozan, Amir</creatorcontrib><creatorcontrib>Noor, Navid</creatorcontrib><creatorcontrib>Higgins, Drew C.</creatorcontrib><creatorcontrib>Kruusenberg, Ivar</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najafli, Erkin</au><au>Ratso, Sander</au><au>Foroozan, Amir</au><au>Noor, Navid</au><au>Higgins, Drew C.</au><au>Kruusenberg, Ivar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionalization of CO2‑Derived Carbon Support as a Pathway to Enhancing the Oxygen Reduction Reaction Performance of Pt Electrocatalysts</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2024-08-06</date><risdate>2024</risdate><volume>38</volume><issue>16</issue><spage>15601</spage><epage>15610</epage><pages>15601-15610</pages><issn>0887-0624</issn><issn>1520-5029</issn><eissn>1520-5029</eissn><abstract>Proton-exchange membrane fuel cells (PEMFCs) hold promise for clean energy generation, but their commercialization is partially hindered by the sluggish oxygen reduction reaction (ORR) at the cathode, which relies on costly Pt electrocatalysts supported by petroleum-derived carbon. This study investigates a CO2-derived carbon (CO2–C) material as a sustainable alternative to petroleum-derived carbon and attempts to enhance the ORR performance of Pt electrocatalyst with the CO2–C support by pretreatment with hydrogen peroxide (H2O2) and potassium hydroxide (KOH) solutions. Based on physical characterization results, both KOH and H2O2 pretreatments of CO2–C increased the Brunauer–Emmett–Teller (BET) surface area and improved the metal–support interaction compared to untreated CO2–C. Electrochemical characterization revealed superior ORR performance of Pt/H2O2–CO2–C, exhibiting higher mass activity (142.8 mA mgPt –1) compared to Pt/CO2–C (102 mA mgPt –1), while Pt/KOH–CO2–C showed the highest specific activity (1503.8 μA cmPt –2) among the studied samples. Thus, Pt electrocatalysts with pretreated CO2–C support are presented as an alternative to conventional Pt/C catalysts toward sustainable and high-performance PEMFCs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.4c02407</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9873-3795</orcidid><orcidid>https://orcid.org/0000-0002-0585-2670</orcidid><orcidid>https://orcid.org/0000-0002-8199-9324</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2024-08, Vol.38 (16), p.15601-15610
issn 0887-0624
1520-5029
1520-5029
language eng
recordid cdi_proquest_miscellaneous_3153699276
source ACS Publications
subjects carbon
Catalysis and Kinetics
cathodes
clean energy
commercialization
electrochemistry
energy
fuels
hydrogen peroxide
physical properties
potassium hydroxide
surface area
title Functionalization of CO2‑Derived Carbon Support as a Pathway to Enhancing the Oxygen Reduction Reaction Performance of Pt Electrocatalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionalization%20of%20CO2%E2%80%91Derived%20Carbon%20Support%20as%20a%20Pathway%20to%20Enhancing%20the%20Oxygen%20Reduction%20Reaction%20Performance%20of%20Pt%20Electrocatalysts&rft.jtitle=Energy%20&%20fuels&rft.au=Najafli,%20Erkin&rft.date=2024-08-06&rft.volume=38&rft.issue=16&rft.spage=15601&rft.epage=15610&rft.pages=15601-15610&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.4c02407&rft_dat=%3Cproquest_acs_j%3E3153699276%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153699276&rft_id=info:pmid/&rfr_iscdi=true