Al3Zr nanophase-enabled anti-corrosion mechanisms in high-strength Al alloy by scalable micro-alloying design

A novel scalable approach via Zr micro-alloying to enhance the corrosion resistance of high-strength Aluminum (Al) alloy A206 without compromising mechanical strength has been proposed. The improved corrosion resistance in Zr-micro-alloyed A206 is attributed to the refined grains, narrowed precipita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2024-07, Vol.59 (26), p.12029-12049
Hauptverfasser: Zhao, Bo, Luo, Zairan, Yin, Nian, Zhang, Zhinan, Zhang, Xiuzhen, Zhou, Chengshang, Wang, Shuai, Fang, Zhigang (Zak), Zhou, Dengshan, Wang, Tianlu, Pan, Shuaihang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12049
container_issue 26
container_start_page 12029
container_title Journal of materials science
container_volume 59
creator Zhao, Bo
Luo, Zairan
Yin, Nian
Zhang, Zhinan
Zhang, Xiuzhen
Zhou, Chengshang
Wang, Shuai
Fang, Zhigang (Zak)
Zhou, Dengshan
Wang, Tianlu
Pan, Shuaihang
description A novel scalable approach via Zr micro-alloying to enhance the corrosion resistance of high-strength Aluminum (Al) alloy A206 without compromising mechanical strength has been proposed. The improved corrosion resistance in Zr-micro-alloyed A206 is attributed to the refined grains, narrowed precipitation-free zones (PFZs), and modified precipitates with Al 3 Zr nanophase. With these benefits, the Al 3 Zr nanophase promotes a rapid oxide passivation film, inhibits diffusion and redeposition of copper (Cu), impedes chlorine (Cl) penetration through grain boundaries (GBs), and promotes cracking tolerance to mitigate corrosion degradation. This study provides new insights into designing high-strength Al alloys with superior corrosion resistance.
doi_str_mv 10.1007/s10853-024-09859-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153680886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153680886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-c67c748cee7dd393756effbb2e3abc5f7d77668139d66780e2b79b1d4a926e7a3</originalsourceid><addsrcrecordid>eNp9kT1rHDEQhkWwIedz_kAqQZo0ivWx-tjyMI5jMKRJmjRCq53d1aGVLtJecf71WfsCBheuBobnfZnhQegzo98YpfqmMmqkIJQ3hLZGtuTpA9owqQVpDBUXaEMp54Q3in1EV7XuKaVSc7ZB8y6KPwUnl_JhchUIJNdF6LFLSyA-l5JryAnP4CeXQp0rDglPYZxIXQqkcZnwLmIXYz7h7oSrd_G5AM_Bl0xe9iGNuIcaxnSNLgcXK3z6P7fo9_e7X7c_yOPP-4fb3SPxgoqFeKW9bowH0H0vWqGlgmHoOg7CdV4OutdaKcNE2yulDQXe6bZjfeNarkA7sUVfz72Hkv8eoS52DtVDjC5BPlYrmBTKUGPUin55g-7zsaT1Oiuolo1UzOiV4mdqfarWAoM9lDC7crKM2mcD9mzArgbsiwH7tIbEOVRXOI1QXqvfSf0DisSK7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075456187</pqid></control><display><type>article</type><title>Al3Zr nanophase-enabled anti-corrosion mechanisms in high-strength Al alloy by scalable micro-alloying design</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Bo ; Luo, Zairan ; Yin, Nian ; Zhang, Zhinan ; Zhang, Xiuzhen ; Zhou, Chengshang ; Wang, Shuai ; Fang, Zhigang (Zak) ; Zhou, Dengshan ; Wang, Tianlu ; Pan, Shuaihang</creator><creatorcontrib>Zhao, Bo ; Luo, Zairan ; Yin, Nian ; Zhang, Zhinan ; Zhang, Xiuzhen ; Zhou, Chengshang ; Wang, Shuai ; Fang, Zhigang (Zak) ; Zhou, Dengshan ; Wang, Tianlu ; Pan, Shuaihang</creatorcontrib><description>A novel scalable approach via Zr micro-alloying to enhance the corrosion resistance of high-strength Aluminum (Al) alloy A206 without compromising mechanical strength has been proposed. The improved corrosion resistance in Zr-micro-alloyed A206 is attributed to the refined grains, narrowed precipitation-free zones (PFZs), and modified precipitates with Al 3 Zr nanophase. With these benefits, the Al 3 Zr nanophase promotes a rapid oxide passivation film, inhibits diffusion and redeposition of copper (Cu), impedes chlorine (Cl) penetration through grain boundaries (GBs), and promotes cracking tolerance to mitigate corrosion degradation. This study provides new insights into designing high-strength Al alloys with superior corrosion resistance.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-09859-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aging ; Alloys ; Aluminum ; Aluminum base alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chlorine ; Classical Mechanics ; Copper ; corrosion ; Corrosion mechanisms ; Corrosion potential ; Corrosion prevention ; Corrosion resistance ; Corrosion tests ; Crystallography and Scattering Methods ; Grain boundaries ; Grain size ; High strength alloys ; Materials Science ; Mechanical engineering ; Mechanical properties ; Metals &amp; Corrosion ; Microalloying ; Oxidation ; Polymer Sciences ; Precipitates ; Solid Mechanics ; strength (mechanics) ; Zirconium</subject><ispartof>Journal of materials science, 2024-07, Vol.59 (26), p.12029-12049</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-c67c748cee7dd393756effbb2e3abc5f7d77668139d66780e2b79b1d4a926e7a3</cites><orcidid>0000-0002-5312-992X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-09859-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-09859-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Luo, Zairan</creatorcontrib><creatorcontrib>Yin, Nian</creatorcontrib><creatorcontrib>Zhang, Zhinan</creatorcontrib><creatorcontrib>Zhang, Xiuzhen</creatorcontrib><creatorcontrib>Zhou, Chengshang</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Fang, Zhigang (Zak)</creatorcontrib><creatorcontrib>Zhou, Dengshan</creatorcontrib><creatorcontrib>Wang, Tianlu</creatorcontrib><creatorcontrib>Pan, Shuaihang</creatorcontrib><title>Al3Zr nanophase-enabled anti-corrosion mechanisms in high-strength Al alloy by scalable micro-alloying design</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>A novel scalable approach via Zr micro-alloying to enhance the corrosion resistance of high-strength Aluminum (Al) alloy A206 without compromising mechanical strength has been proposed. The improved corrosion resistance in Zr-micro-alloyed A206 is attributed to the refined grains, narrowed precipitation-free zones (PFZs), and modified precipitates with Al 3 Zr nanophase. With these benefits, the Al 3 Zr nanophase promotes a rapid oxide passivation film, inhibits diffusion and redeposition of copper (Cu), impedes chlorine (Cl) penetration through grain boundaries (GBs), and promotes cracking tolerance to mitigate corrosion degradation. This study provides new insights into designing high-strength Al alloys with superior corrosion resistance.</description><subject>Aging</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chlorine</subject><subject>Classical Mechanics</subject><subject>Copper</subject><subject>corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion potential</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Crystallography and Scattering Methods</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>High strength alloys</subject><subject>Materials Science</subject><subject>Mechanical engineering</subject><subject>Mechanical properties</subject><subject>Metals &amp; Corrosion</subject><subject>Microalloying</subject><subject>Oxidation</subject><subject>Polymer Sciences</subject><subject>Precipitates</subject><subject>Solid Mechanics</subject><subject>strength (mechanics)</subject><subject>Zirconium</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kT1rHDEQhkWwIedz_kAqQZo0ivWx-tjyMI5jMKRJmjRCq53d1aGVLtJecf71WfsCBheuBobnfZnhQegzo98YpfqmMmqkIJQ3hLZGtuTpA9owqQVpDBUXaEMp54Q3in1EV7XuKaVSc7ZB8y6KPwUnl_JhchUIJNdF6LFLSyA-l5JryAnP4CeXQp0rDglPYZxIXQqkcZnwLmIXYz7h7oSrd_G5AM_Bl0xe9iGNuIcaxnSNLgcXK3z6P7fo9_e7X7c_yOPP-4fb3SPxgoqFeKW9bowH0H0vWqGlgmHoOg7CdV4OutdaKcNE2yulDQXe6bZjfeNarkA7sUVfz72Hkv8eoS52DtVDjC5BPlYrmBTKUGPUin55g-7zsaT1Oiuolo1UzOiV4mdqfarWAoM9lDC7crKM2mcD9mzArgbsiwH7tIbEOVRXOI1QXqvfSf0DisSK7g</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhao, Bo</creator><creator>Luo, Zairan</creator><creator>Yin, Nian</creator><creator>Zhang, Zhinan</creator><creator>Zhang, Xiuzhen</creator><creator>Zhou, Chengshang</creator><creator>Wang, Shuai</creator><creator>Fang, Zhigang (Zak)</creator><creator>Zhou, Dengshan</creator><creator>Wang, Tianlu</creator><creator>Pan, Shuaihang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5312-992X</orcidid></search><sort><creationdate>20240701</creationdate><title>Al3Zr nanophase-enabled anti-corrosion mechanisms in high-strength Al alloy by scalable micro-alloying design</title><author>Zhao, Bo ; Luo, Zairan ; Yin, Nian ; Zhang, Zhinan ; Zhang, Xiuzhen ; Zhou, Chengshang ; Wang, Shuai ; Fang, Zhigang (Zak) ; Zhou, Dengshan ; Wang, Tianlu ; Pan, Shuaihang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-c67c748cee7dd393756effbb2e3abc5f7d77668139d66780e2b79b1d4a926e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aging</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chlorine</topic><topic>Classical Mechanics</topic><topic>Copper</topic><topic>corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion potential</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Crystallography and Scattering Methods</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>High strength alloys</topic><topic>Materials Science</topic><topic>Mechanical engineering</topic><topic>Mechanical properties</topic><topic>Metals &amp; Corrosion</topic><topic>Microalloying</topic><topic>Oxidation</topic><topic>Polymer Sciences</topic><topic>Precipitates</topic><topic>Solid Mechanics</topic><topic>strength (mechanics)</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Luo, Zairan</creatorcontrib><creatorcontrib>Yin, Nian</creatorcontrib><creatorcontrib>Zhang, Zhinan</creatorcontrib><creatorcontrib>Zhang, Xiuzhen</creatorcontrib><creatorcontrib>Zhou, Chengshang</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Fang, Zhigang (Zak)</creatorcontrib><creatorcontrib>Zhou, Dengshan</creatorcontrib><creatorcontrib>Wang, Tianlu</creatorcontrib><creatorcontrib>Pan, Shuaihang</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Bo</au><au>Luo, Zairan</au><au>Yin, Nian</au><au>Zhang, Zhinan</au><au>Zhang, Xiuzhen</au><au>Zhou, Chengshang</au><au>Wang, Shuai</au><au>Fang, Zhigang (Zak)</au><au>Zhou, Dengshan</au><au>Wang, Tianlu</au><au>Pan, Shuaihang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Al3Zr nanophase-enabled anti-corrosion mechanisms in high-strength Al alloy by scalable micro-alloying design</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>59</volume><issue>26</issue><spage>12029</spage><epage>12049</epage><pages>12029-12049</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>A novel scalable approach via Zr micro-alloying to enhance the corrosion resistance of high-strength Aluminum (Al) alloy A206 without compromising mechanical strength has been proposed. The improved corrosion resistance in Zr-micro-alloyed A206 is attributed to the refined grains, narrowed precipitation-free zones (PFZs), and modified precipitates with Al 3 Zr nanophase. With these benefits, the Al 3 Zr nanophase promotes a rapid oxide passivation film, inhibits diffusion and redeposition of copper (Cu), impedes chlorine (Cl) penetration through grain boundaries (GBs), and promotes cracking tolerance to mitigate corrosion degradation. This study provides new insights into designing high-strength Al alloys with superior corrosion resistance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-09859-z</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5312-992X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2024-07, Vol.59 (26), p.12029-12049
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_3153680886
source SpringerLink Journals - AutoHoldings
subjects Aging
Alloys
Aluminum
Aluminum base alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chlorine
Classical Mechanics
Copper
corrosion
Corrosion mechanisms
Corrosion potential
Corrosion prevention
Corrosion resistance
Corrosion tests
Crystallography and Scattering Methods
Grain boundaries
Grain size
High strength alloys
Materials Science
Mechanical engineering
Mechanical properties
Metals & Corrosion
Microalloying
Oxidation
Polymer Sciences
Precipitates
Solid Mechanics
strength (mechanics)
Zirconium
title Al3Zr nanophase-enabled anti-corrosion mechanisms in high-strength Al alloy by scalable micro-alloying design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Al3Zr%20nanophase-enabled%20anti-corrosion%20mechanisms%20in%20high-strength%20Al%20alloy%20by%20scalable%20micro-alloying%20design&rft.jtitle=Journal%20of%20materials%20science&rft.au=Zhao,%20Bo&rft.date=2024-07-01&rft.volume=59&rft.issue=26&rft.spage=12029&rft.epage=12049&rft.pages=12029-12049&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-09859-z&rft_dat=%3Cproquest_cross%3E3153680886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075456187&rft_id=info:pmid/&rfr_iscdi=true