Intercomparison of global foliar trait maps reveals fundamental differences and limitations of upscaling approaches
Foliar traits such as specific leaf area (SLA), leaf nitrogen (N), and phosphorus (P) concentrations play important roles in plant economic strategies and ecosystem functioning. Various global maps of these foliar traits have been generated using statistical upscaling approaches based on in-situ tra...
Gespeichert in:
Veröffentlicht in: | Remote sensing of environment 2024-09, Vol.311, p.114276, Article 114276 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114276 |
container_title | Remote sensing of environment |
container_volume | 311 |
creator | Dechant, Benjamin Kattge, Jens Pavlick, Ryan Schneider, Fabian D. Sabatini, Francesco M. Moreno-Martínez, Álvaro Butler, Ethan E. van Bodegom, Peter M. Vallicrosa, Helena Kattenborn, Teja Boonman, Coline C.F. Madani, Nima Wright, Ian J. Dong, Ning Feilhauer, Hannes Peñuelas, Josep Sardans, Jordi Aguirre-Gutiérrez, Jesús Reich, Peter B. Leitão, Pedro J. Cavender-Bares, Jeannine Myers-Smith, Isla H. Durán, Sandra M. Croft, Holly Prentice, I. Colin Huth, Andreas Rebel, Karin Zaehle, Sönke Šímová, Irena Díaz, Sandra Reichstein, Markus Schiller, Christopher Bruelheide, Helge Mahecha, Miguel Wirth, Christian Malhi, Yadvinder Townsend, Philip A. |
description | Foliar traits such as specific leaf area (SLA), leaf nitrogen (N), and phosphorus (P) concentrations play important roles in plant economic strategies and ecosystem functioning. Various global maps of these foliar traits have been generated using statistical upscaling approaches based on in-situ trait observations. Here, we intercompare such global upscaled foliar trait maps at 0.5° spatial resolution (six maps for SLA, five for N, three for P), categorize the upscaling approaches used to generate them, and evaluate the maps with trait estimates from a global database of vegetation plots (sPlotOpen). We disentangled the contributions from different plant functional types (PFTs) to the upscaled maps and quantified the impacts of using different plot-level trait metrics on the evaluation with sPlotOpen: community weighted mean (CWM) and top-of-canopy weighted mean (TWM). We found that the global foliar trait maps of SLA and N differ drastically and fall into two groups that are almost uncorrelated (for P only maps from one group were available). The primary factor explaining the differences between these groups is the use of PFT information combined with remote sensing-derived land cover products in one group while the other group mostly relied on environmental predictors alone. The maps that used PFT and corresponding land cover information exhibit considerable similarities in spatial patterns that are strongly driven by land cover. The maps not using PFTs show a lower level of similarity and tend to be strongly driven by individual environmental variables. Upscaled maps of both groups were moderately correlated to sPlotOpen data aggregated to the grid-cell level (R = 0.2–0.6) when processing sPlotOpen in a way that is consistent with the respective trait upscaling approaches, including the plot-level trait metric (CWM or TWM) and the scaling to the grid cells with or without accounting for fractional land cover. The impact of using TWM or CWM was relevant, but considerably smaller than that of the PFT and land cover information. The maps using PFT and land cover information better reproduce the between-PFT trait differences of sPlotOpen data, while the two groups performed similarly in capturing within-PFT trait variation.
Our findings highlight the importance of explicitly accounting for within-grid-cell trait variation, which has important implications for applications using existing maps and future upscaling efforts. Remote sensing information has great |
doi_str_mv | 10.1016/j.rse.2024.114276 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153677496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425724002943</els_id><sourcerecordid>3153677496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-6cf50164ce62ed84efb4b72230600e7b2c04a79a114efbd7038da2dd0c340d273</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRbcACQh8AJ1LmgTb610HUSHEI1IkGqitiT0GR7v24nEi8fc4CjXVFPcxuqdprgVfCC762-0iEy4kl2ohhJK6P2nOOW_VXMlOnzUXRFvORbfU4ryhVSyYbRonyIFSZMmzzyFtYGA-DQEyKxlCYSNMxDLuEQZifhcdjBhLdbngPWaMFolBdGwIYyhQQop06NpNZGEI8ZPBNOUE9gvpsjn1tQav_u6s-Xh-en98na_fXlaPD-u5bWVX5r31XZ2jLPYS3VKh36iNlrLlPeeoN9JyBfoO6sYqOc3bpQPpHLet4k7qdtbcHHvr4-8dUjFjIIvDABHTjkwrurbXWt311SqOVpsTUUZvphxGyD9GcHOAaramQjUHqOYItWbujxmsG_YBsyEbDiBcyGiLcSn8k_4FMpqEPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153677496</pqid></control><display><type>article</type><title>Intercomparison of global foliar trait maps reveals fundamental differences and limitations of upscaling approaches</title><source>Elsevier ScienceDirect Journals</source><creator>Dechant, Benjamin ; Kattge, Jens ; Pavlick, Ryan ; Schneider, Fabian D. ; Sabatini, Francesco M. ; Moreno-Martínez, Álvaro ; Butler, Ethan E. ; van Bodegom, Peter M. ; Vallicrosa, Helena ; Kattenborn, Teja ; Boonman, Coline C.F. ; Madani, Nima ; Wright, Ian J. ; Dong, Ning ; Feilhauer, Hannes ; Peñuelas, Josep ; Sardans, Jordi ; Aguirre-Gutiérrez, Jesús ; Reich, Peter B. ; Leitão, Pedro J. ; Cavender-Bares, Jeannine ; Myers-Smith, Isla H. ; Durán, Sandra M. ; Croft, Holly ; Prentice, I. Colin ; Huth, Andreas ; Rebel, Karin ; Zaehle, Sönke ; Šímová, Irena ; Díaz, Sandra ; Reichstein, Markus ; Schiller, Christopher ; Bruelheide, Helge ; Mahecha, Miguel ; Wirth, Christian ; Malhi, Yadvinder ; Townsend, Philip A.</creator><creatorcontrib>Dechant, Benjamin ; Kattge, Jens ; Pavlick, Ryan ; Schneider, Fabian D. ; Sabatini, Francesco M. ; Moreno-Martínez, Álvaro ; Butler, Ethan E. ; van Bodegom, Peter M. ; Vallicrosa, Helena ; Kattenborn, Teja ; Boonman, Coline C.F. ; Madani, Nima ; Wright, Ian J. ; Dong, Ning ; Feilhauer, Hannes ; Peñuelas, Josep ; Sardans, Jordi ; Aguirre-Gutiérrez, Jesús ; Reich, Peter B. ; Leitão, Pedro J. ; Cavender-Bares, Jeannine ; Myers-Smith, Isla H. ; Durán, Sandra M. ; Croft, Holly ; Prentice, I. Colin ; Huth, Andreas ; Rebel, Karin ; Zaehle, Sönke ; Šímová, Irena ; Díaz, Sandra ; Reichstein, Markus ; Schiller, Christopher ; Bruelheide, Helge ; Mahecha, Miguel ; Wirth, Christian ; Malhi, Yadvinder ; Townsend, Philip A.</creatorcontrib><description>Foliar traits such as specific leaf area (SLA), leaf nitrogen (N), and phosphorus (P) concentrations play important roles in plant economic strategies and ecosystem functioning. Various global maps of these foliar traits have been generated using statistical upscaling approaches based on in-situ trait observations. Here, we intercompare such global upscaled foliar trait maps at 0.5° spatial resolution (six maps for SLA, five for N, three for P), categorize the upscaling approaches used to generate them, and evaluate the maps with trait estimates from a global database of vegetation plots (sPlotOpen). We disentangled the contributions from different plant functional types (PFTs) to the upscaled maps and quantified the impacts of using different plot-level trait metrics on the evaluation with sPlotOpen: community weighted mean (CWM) and top-of-canopy weighted mean (TWM). We found that the global foliar trait maps of SLA and N differ drastically and fall into two groups that are almost uncorrelated (for P only maps from one group were available). The primary factor explaining the differences between these groups is the use of PFT information combined with remote sensing-derived land cover products in one group while the other group mostly relied on environmental predictors alone. The maps that used PFT and corresponding land cover information exhibit considerable similarities in spatial patterns that are strongly driven by land cover. The maps not using PFTs show a lower level of similarity and tend to be strongly driven by individual environmental variables. Upscaled maps of both groups were moderately correlated to sPlotOpen data aggregated to the grid-cell level (R = 0.2–0.6) when processing sPlotOpen in a way that is consistent with the respective trait upscaling approaches, including the plot-level trait metric (CWM or TWM) and the scaling to the grid cells with or without accounting for fractional land cover. The impact of using TWM or CWM was relevant, but considerably smaller than that of the PFT and land cover information. The maps using PFT and land cover information better reproduce the between-PFT trait differences of sPlotOpen data, while the two groups performed similarly in capturing within-PFT trait variation.
Our findings highlight the importance of explicitly accounting for within-grid-cell trait variation, which has important implications for applications using existing maps and future upscaling efforts. Remote sensing information has great potential to reduce uncertainties related to scaling from in-situ observations to grid cells and the regression-based mapping steps involved in the upscaling.
[Display omitted]
•Analyses revealed two fundamentally different categories of upscaled trait maps.•Differences between categories mainly driven by use of plant functional types (PFT).•Additional differences due to whole community vs. top-of-canopy trait metrics.•Upscaling without PFT does not capture the observed trait differences between them.•Accounting for within-grid-cell trait variation crucial for upscaling and evaluation.</description><identifier>ISSN: 0034-4257</identifier><identifier>DOI: 10.1016/j.rse.2024.114276</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>ecosystems ; environment ; Foliar trait ; Global map ; land cover ; Leaf nitrogen ; Leaf phosphorus ; leaves ; nitrogen ; phosphorus ; Specific leaf area ; Upscaling ; vegetation</subject><ispartof>Remote sensing of environment, 2024-09, Vol.311, p.114276, Article 114276</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-6cf50164ce62ed84efb4b72230600e7b2c04a79a114efbd7038da2dd0c340d273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0034425724002943$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dechant, Benjamin</creatorcontrib><creatorcontrib>Kattge, Jens</creatorcontrib><creatorcontrib>Pavlick, Ryan</creatorcontrib><creatorcontrib>Schneider, Fabian D.</creatorcontrib><creatorcontrib>Sabatini, Francesco M.</creatorcontrib><creatorcontrib>Moreno-Martínez, Álvaro</creatorcontrib><creatorcontrib>Butler, Ethan E.</creatorcontrib><creatorcontrib>van Bodegom, Peter M.</creatorcontrib><creatorcontrib>Vallicrosa, Helena</creatorcontrib><creatorcontrib>Kattenborn, Teja</creatorcontrib><creatorcontrib>Boonman, Coline C.F.</creatorcontrib><creatorcontrib>Madani, Nima</creatorcontrib><creatorcontrib>Wright, Ian J.</creatorcontrib><creatorcontrib>Dong, Ning</creatorcontrib><creatorcontrib>Feilhauer, Hannes</creatorcontrib><creatorcontrib>Peñuelas, Josep</creatorcontrib><creatorcontrib>Sardans, Jordi</creatorcontrib><creatorcontrib>Aguirre-Gutiérrez, Jesús</creatorcontrib><creatorcontrib>Reich, Peter B.</creatorcontrib><creatorcontrib>Leitão, Pedro J.</creatorcontrib><creatorcontrib>Cavender-Bares, Jeannine</creatorcontrib><creatorcontrib>Myers-Smith, Isla H.</creatorcontrib><creatorcontrib>Durán, Sandra M.</creatorcontrib><creatorcontrib>Croft, Holly</creatorcontrib><creatorcontrib>Prentice, I. Colin</creatorcontrib><creatorcontrib>Huth, Andreas</creatorcontrib><creatorcontrib>Rebel, Karin</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Šímová, Irena</creatorcontrib><creatorcontrib>Díaz, Sandra</creatorcontrib><creatorcontrib>Reichstein, Markus</creatorcontrib><creatorcontrib>Schiller, Christopher</creatorcontrib><creatorcontrib>Bruelheide, Helge</creatorcontrib><creatorcontrib>Mahecha, Miguel</creatorcontrib><creatorcontrib>Wirth, Christian</creatorcontrib><creatorcontrib>Malhi, Yadvinder</creatorcontrib><creatorcontrib>Townsend, Philip A.</creatorcontrib><title>Intercomparison of global foliar trait maps reveals fundamental differences and limitations of upscaling approaches</title><title>Remote sensing of environment</title><description>Foliar traits such as specific leaf area (SLA), leaf nitrogen (N), and phosphorus (P) concentrations play important roles in plant economic strategies and ecosystem functioning. Various global maps of these foliar traits have been generated using statistical upscaling approaches based on in-situ trait observations. Here, we intercompare such global upscaled foliar trait maps at 0.5° spatial resolution (six maps for SLA, five for N, three for P), categorize the upscaling approaches used to generate them, and evaluate the maps with trait estimates from a global database of vegetation plots (sPlotOpen). We disentangled the contributions from different plant functional types (PFTs) to the upscaled maps and quantified the impacts of using different plot-level trait metrics on the evaluation with sPlotOpen: community weighted mean (CWM) and top-of-canopy weighted mean (TWM). We found that the global foliar trait maps of SLA and N differ drastically and fall into two groups that are almost uncorrelated (for P only maps from one group were available). The primary factor explaining the differences between these groups is the use of PFT information combined with remote sensing-derived land cover products in one group while the other group mostly relied on environmental predictors alone. The maps that used PFT and corresponding land cover information exhibit considerable similarities in spatial patterns that are strongly driven by land cover. The maps not using PFTs show a lower level of similarity and tend to be strongly driven by individual environmental variables. Upscaled maps of both groups were moderately correlated to sPlotOpen data aggregated to the grid-cell level (R = 0.2–0.6) when processing sPlotOpen in a way that is consistent with the respective trait upscaling approaches, including the plot-level trait metric (CWM or TWM) and the scaling to the grid cells with or without accounting for fractional land cover. The impact of using TWM or CWM was relevant, but considerably smaller than that of the PFT and land cover information. The maps using PFT and land cover information better reproduce the between-PFT trait differences of sPlotOpen data, while the two groups performed similarly in capturing within-PFT trait variation.
Our findings highlight the importance of explicitly accounting for within-grid-cell trait variation, which has important implications for applications using existing maps and future upscaling efforts. Remote sensing information has great potential to reduce uncertainties related to scaling from in-situ observations to grid cells and the regression-based mapping steps involved in the upscaling.
[Display omitted]
•Analyses revealed two fundamentally different categories of upscaled trait maps.•Differences between categories mainly driven by use of plant functional types (PFT).•Additional differences due to whole community vs. top-of-canopy trait metrics.•Upscaling without PFT does not capture the observed trait differences between them.•Accounting for within-grid-cell trait variation crucial for upscaling and evaluation.</description><subject>ecosystems</subject><subject>environment</subject><subject>Foliar trait</subject><subject>Global map</subject><subject>land cover</subject><subject>Leaf nitrogen</subject><subject>Leaf phosphorus</subject><subject>leaves</subject><subject>nitrogen</subject><subject>phosphorus</subject><subject>Specific leaf area</subject><subject>Upscaling</subject><subject>vegetation</subject><issn>0034-4257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRbcACQh8AJ1LmgTb610HUSHEI1IkGqitiT0GR7v24nEi8fc4CjXVFPcxuqdprgVfCC762-0iEy4kl2ohhJK6P2nOOW_VXMlOnzUXRFvORbfU4ryhVSyYbRonyIFSZMmzzyFtYGA-DQEyKxlCYSNMxDLuEQZifhcdjBhLdbngPWaMFolBdGwIYyhQQop06NpNZGEI8ZPBNOUE9gvpsjn1tQav_u6s-Xh-en98na_fXlaPD-u5bWVX5r31XZ2jLPYS3VKh36iNlrLlPeeoN9JyBfoO6sYqOc3bpQPpHLet4k7qdtbcHHvr4-8dUjFjIIvDABHTjkwrurbXWt311SqOVpsTUUZvphxGyD9GcHOAaramQjUHqOYItWbujxmsG_YBsyEbDiBcyGiLcSn8k_4FMpqEPg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Dechant, Benjamin</creator><creator>Kattge, Jens</creator><creator>Pavlick, Ryan</creator><creator>Schneider, Fabian D.</creator><creator>Sabatini, Francesco M.</creator><creator>Moreno-Martínez, Álvaro</creator><creator>Butler, Ethan E.</creator><creator>van Bodegom, Peter M.</creator><creator>Vallicrosa, Helena</creator><creator>Kattenborn, Teja</creator><creator>Boonman, Coline C.F.</creator><creator>Madani, Nima</creator><creator>Wright, Ian J.</creator><creator>Dong, Ning</creator><creator>Feilhauer, Hannes</creator><creator>Peñuelas, Josep</creator><creator>Sardans, Jordi</creator><creator>Aguirre-Gutiérrez, Jesús</creator><creator>Reich, Peter B.</creator><creator>Leitão, Pedro J.</creator><creator>Cavender-Bares, Jeannine</creator><creator>Myers-Smith, Isla H.</creator><creator>Durán, Sandra M.</creator><creator>Croft, Holly</creator><creator>Prentice, I. Colin</creator><creator>Huth, Andreas</creator><creator>Rebel, Karin</creator><creator>Zaehle, Sönke</creator><creator>Šímová, Irena</creator><creator>Díaz, Sandra</creator><creator>Reichstein, Markus</creator><creator>Schiller, Christopher</creator><creator>Bruelheide, Helge</creator><creator>Mahecha, Miguel</creator><creator>Wirth, Christian</creator><creator>Malhi, Yadvinder</creator><creator>Townsend, Philip A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240901</creationdate><title>Intercomparison of global foliar trait maps reveals fundamental differences and limitations of upscaling approaches</title><author>Dechant, Benjamin ; Kattge, Jens ; Pavlick, Ryan ; Schneider, Fabian D. ; Sabatini, Francesco M. ; Moreno-Martínez, Álvaro ; Butler, Ethan E. ; van Bodegom, Peter M. ; Vallicrosa, Helena ; Kattenborn, Teja ; Boonman, Coline C.F. ; Madani, Nima ; Wright, Ian J. ; Dong, Ning ; Feilhauer, Hannes ; Peñuelas, Josep ; Sardans, Jordi ; Aguirre-Gutiérrez, Jesús ; Reich, Peter B. ; Leitão, Pedro J. ; Cavender-Bares, Jeannine ; Myers-Smith, Isla H. ; Durán, Sandra M. ; Croft, Holly ; Prentice, I. Colin ; Huth, Andreas ; Rebel, Karin ; Zaehle, Sönke ; Šímová, Irena ; Díaz, Sandra ; Reichstein, Markus ; Schiller, Christopher ; Bruelheide, Helge ; Mahecha, Miguel ; Wirth, Christian ; Malhi, Yadvinder ; Townsend, Philip A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-6cf50164ce62ed84efb4b72230600e7b2c04a79a114efbd7038da2dd0c340d273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ecosystems</topic><topic>environment</topic><topic>Foliar trait</topic><topic>Global map</topic><topic>land cover</topic><topic>Leaf nitrogen</topic><topic>Leaf phosphorus</topic><topic>leaves</topic><topic>nitrogen</topic><topic>phosphorus</topic><topic>Specific leaf area</topic><topic>Upscaling</topic><topic>vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dechant, Benjamin</creatorcontrib><creatorcontrib>Kattge, Jens</creatorcontrib><creatorcontrib>Pavlick, Ryan</creatorcontrib><creatorcontrib>Schneider, Fabian D.</creatorcontrib><creatorcontrib>Sabatini, Francesco M.</creatorcontrib><creatorcontrib>Moreno-Martínez, Álvaro</creatorcontrib><creatorcontrib>Butler, Ethan E.</creatorcontrib><creatorcontrib>van Bodegom, Peter M.</creatorcontrib><creatorcontrib>Vallicrosa, Helena</creatorcontrib><creatorcontrib>Kattenborn, Teja</creatorcontrib><creatorcontrib>Boonman, Coline C.F.</creatorcontrib><creatorcontrib>Madani, Nima</creatorcontrib><creatorcontrib>Wright, Ian J.</creatorcontrib><creatorcontrib>Dong, Ning</creatorcontrib><creatorcontrib>Feilhauer, Hannes</creatorcontrib><creatorcontrib>Peñuelas, Josep</creatorcontrib><creatorcontrib>Sardans, Jordi</creatorcontrib><creatorcontrib>Aguirre-Gutiérrez, Jesús</creatorcontrib><creatorcontrib>Reich, Peter B.</creatorcontrib><creatorcontrib>Leitão, Pedro J.</creatorcontrib><creatorcontrib>Cavender-Bares, Jeannine</creatorcontrib><creatorcontrib>Myers-Smith, Isla H.</creatorcontrib><creatorcontrib>Durán, Sandra M.</creatorcontrib><creatorcontrib>Croft, Holly</creatorcontrib><creatorcontrib>Prentice, I. Colin</creatorcontrib><creatorcontrib>Huth, Andreas</creatorcontrib><creatorcontrib>Rebel, Karin</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Šímová, Irena</creatorcontrib><creatorcontrib>Díaz, Sandra</creatorcontrib><creatorcontrib>Reichstein, Markus</creatorcontrib><creatorcontrib>Schiller, Christopher</creatorcontrib><creatorcontrib>Bruelheide, Helge</creatorcontrib><creatorcontrib>Mahecha, Miguel</creatorcontrib><creatorcontrib>Wirth, Christian</creatorcontrib><creatorcontrib>Malhi, Yadvinder</creatorcontrib><creatorcontrib>Townsend, Philip A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dechant, Benjamin</au><au>Kattge, Jens</au><au>Pavlick, Ryan</au><au>Schneider, Fabian D.</au><au>Sabatini, Francesco M.</au><au>Moreno-Martínez, Álvaro</au><au>Butler, Ethan E.</au><au>van Bodegom, Peter M.</au><au>Vallicrosa, Helena</au><au>Kattenborn, Teja</au><au>Boonman, Coline C.F.</au><au>Madani, Nima</au><au>Wright, Ian J.</au><au>Dong, Ning</au><au>Feilhauer, Hannes</au><au>Peñuelas, Josep</au><au>Sardans, Jordi</au><au>Aguirre-Gutiérrez, Jesús</au><au>Reich, Peter B.</au><au>Leitão, Pedro J.</au><au>Cavender-Bares, Jeannine</au><au>Myers-Smith, Isla H.</au><au>Durán, Sandra M.</au><au>Croft, Holly</au><au>Prentice, I. Colin</au><au>Huth, Andreas</au><au>Rebel, Karin</au><au>Zaehle, Sönke</au><au>Šímová, Irena</au><au>Díaz, Sandra</au><au>Reichstein, Markus</au><au>Schiller, Christopher</au><au>Bruelheide, Helge</au><au>Mahecha, Miguel</au><au>Wirth, Christian</au><au>Malhi, Yadvinder</au><au>Townsend, Philip A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intercomparison of global foliar trait maps reveals fundamental differences and limitations of upscaling approaches</atitle><jtitle>Remote sensing of environment</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>311</volume><spage>114276</spage><pages>114276-</pages><artnum>114276</artnum><issn>0034-4257</issn><abstract>Foliar traits such as specific leaf area (SLA), leaf nitrogen (N), and phosphorus (P) concentrations play important roles in plant economic strategies and ecosystem functioning. Various global maps of these foliar traits have been generated using statistical upscaling approaches based on in-situ trait observations. Here, we intercompare such global upscaled foliar trait maps at 0.5° spatial resolution (six maps for SLA, five for N, three for P), categorize the upscaling approaches used to generate them, and evaluate the maps with trait estimates from a global database of vegetation plots (sPlotOpen). We disentangled the contributions from different plant functional types (PFTs) to the upscaled maps and quantified the impacts of using different plot-level trait metrics on the evaluation with sPlotOpen: community weighted mean (CWM) and top-of-canopy weighted mean (TWM). We found that the global foliar trait maps of SLA and N differ drastically and fall into two groups that are almost uncorrelated (for P only maps from one group were available). The primary factor explaining the differences between these groups is the use of PFT information combined with remote sensing-derived land cover products in one group while the other group mostly relied on environmental predictors alone. The maps that used PFT and corresponding land cover information exhibit considerable similarities in spatial patterns that are strongly driven by land cover. The maps not using PFTs show a lower level of similarity and tend to be strongly driven by individual environmental variables. Upscaled maps of both groups were moderately correlated to sPlotOpen data aggregated to the grid-cell level (R = 0.2–0.6) when processing sPlotOpen in a way that is consistent with the respective trait upscaling approaches, including the plot-level trait metric (CWM or TWM) and the scaling to the grid cells with or without accounting for fractional land cover. The impact of using TWM or CWM was relevant, but considerably smaller than that of the PFT and land cover information. The maps using PFT and land cover information better reproduce the between-PFT trait differences of sPlotOpen data, while the two groups performed similarly in capturing within-PFT trait variation.
Our findings highlight the importance of explicitly accounting for within-grid-cell trait variation, which has important implications for applications using existing maps and future upscaling efforts. Remote sensing information has great potential to reduce uncertainties related to scaling from in-situ observations to grid cells and the regression-based mapping steps involved in the upscaling.
[Display omitted]
•Analyses revealed two fundamentally different categories of upscaled trait maps.•Differences between categories mainly driven by use of plant functional types (PFT).•Additional differences due to whole community vs. top-of-canopy trait metrics.•Upscaling without PFT does not capture the observed trait differences between them.•Accounting for within-grid-cell trait variation crucial for upscaling and evaluation.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2024.114276</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2024-09, Vol.311, p.114276, Article 114276 |
issn | 0034-4257 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153677496 |
source | Elsevier ScienceDirect Journals |
subjects | ecosystems environment Foliar trait Global map land cover Leaf nitrogen Leaf phosphorus leaves nitrogen phosphorus Specific leaf area Upscaling vegetation |
title | Intercomparison of global foliar trait maps reveals fundamental differences and limitations of upscaling approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intercomparison%20of%20global%20foliar%20trait%20maps%20reveals%20fundamental%20differences%20and%20limitations%20of%20upscaling%20approaches&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Dechant,%20Benjamin&rft.date=2024-09-01&rft.volume=311&rft.spage=114276&rft.pages=114276-&rft.artnum=114276&rft.issn=0034-4257&rft_id=info:doi/10.1016/j.rse.2024.114276&rft_dat=%3Cproquest_cross%3E3153677496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153677496&rft_id=info:pmid/&rft_els_id=S0034425724002943&rfr_iscdi=true |