A New Type of LASSO Regression Model with Cauchy Noise

Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2024-06, Vol.29 (2), p.277-300
Hauptverfasser: Ghatari, Amir Hossein, Aminghafari, Mina, Mohammadpour, Adel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 2
container_start_page 277
container_title Journal of agricultural, biological, and environmental statistics
container_volume 29
creator Ghatari, Amir Hossein
Aminghafari, Mina
Mohammadpour, Adel
description Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define AIC and BIC type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.
doi_str_mv 10.1007/s13253-023-00583-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153675389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050684595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-1650511fc887d7f24c2744c5ba651e22bb0bb6dfe3612c16c334c28d7dbf5ad53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoqNU_4CngxcvqJLNJtsdS_ILagq3nsJvNtlu2m5q0LP33pq4gePAQJofnfZl5CLlhcM8A1ENgyAUmwOMDkWHSnZALJlAlXA7xNP4hE4liTJ2TyxDWAAwl8AsiR3RqO7o4bC11FZ2M5vMZfbdLb0OoXUvfXGkb2tW7FR3ne7M60Kmrg70iZ1XeBHv9Mwfk4-lxMX5JJrPn1_FokhgE3CVMChCMVSbLVKkqnhqu0tSIIpeCWc6LAopClpVFybhh0iBGJCtVWVQiLwUOyF3fu_Xuc2_DTm_qYGzT5K11-6Ax3iiVwGwY0ds_6NrtfRu30wgCZJaK4bGQ95TxLgRvK7319Sb3B81AH1XqXqWOKvW3St3FEPahEOF2af1v9T-pLxR_dBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050684595</pqid></control><display><type>article</type><title>A New Type of LASSO Regression Model with Cauchy Noise</title><source>Springer Nature - Complete Springer Journals</source><creator>Ghatari, Amir Hossein ; Aminghafari, Mina ; Mohammadpour, Adel</creator><creatorcontrib>Ghatari, Amir Hossein ; Aminghafari, Mina ; Mohammadpour, Adel</creatorcontrib><description>Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define AIC and BIC type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-023-00583-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Biostatistics ; data collection ; Datasets ; Health Sciences ; Mathematics and Statistics ; Medicine ; Monitoring/Environmental Analysis ; Outliers (statistics) ; Regression analysis ; Regression coefficients ; Regression models ; Regularization ; sounds ; Statistics ; Statistics for Life Sciences</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2024-06, Vol.29 (2), p.277-300</ispartof><rights>International Biometric Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-1650511fc887d7f24c2744c5ba651e22bb0bb6dfe3612c16c334c28d7dbf5ad53</cites><orcidid>0000-0002-9887-8385 ; 0000-0002-5079-7025 ; 0000-0002-0808-1250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13253-023-00583-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13253-023-00583-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ghatari, Amir Hossein</creatorcontrib><creatorcontrib>Aminghafari, Mina</creatorcontrib><creatorcontrib>Mohammadpour, Adel</creatorcontrib><title>A New Type of LASSO Regression Model with Cauchy Noise</title><title>Journal of agricultural, biological, and environmental statistics</title><addtitle>JABES</addtitle><description>Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define AIC and BIC type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.</description><subject>Agriculture</subject><subject>Biostatistics</subject><subject>data collection</subject><subject>Datasets</subject><subject>Health Sciences</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Outliers (statistics)</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Regression models</subject><subject>Regularization</subject><subject>sounds</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoqNU_4CngxcvqJLNJtsdS_ILagq3nsJvNtlu2m5q0LP33pq4gePAQJofnfZl5CLlhcM8A1ENgyAUmwOMDkWHSnZALJlAlXA7xNP4hE4liTJ2TyxDWAAwl8AsiR3RqO7o4bC11FZ2M5vMZfbdLb0OoXUvfXGkb2tW7FR3ne7M60Kmrg70iZ1XeBHv9Mwfk4-lxMX5JJrPn1_FokhgE3CVMChCMVSbLVKkqnhqu0tSIIpeCWc6LAopClpVFybhh0iBGJCtVWVQiLwUOyF3fu_Xuc2_DTm_qYGzT5K11-6Ax3iiVwGwY0ds_6NrtfRu30wgCZJaK4bGQ95TxLgRvK7319Sb3B81AH1XqXqWOKvW3St3FEPahEOF2af1v9T-pLxR_dBE</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ghatari, Amir Hossein</creator><creator>Aminghafari, Mina</creator><creator>Mohammadpour, Adel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9887-8385</orcidid><orcidid>https://orcid.org/0000-0002-5079-7025</orcidid><orcidid>https://orcid.org/0000-0002-0808-1250</orcidid></search><sort><creationdate>20240601</creationdate><title>A New Type of LASSO Regression Model with Cauchy Noise</title><author>Ghatari, Amir Hossein ; Aminghafari, Mina ; Mohammadpour, Adel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-1650511fc887d7f24c2744c5ba651e22bb0bb6dfe3612c16c334c28d7dbf5ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Biostatistics</topic><topic>data collection</topic><topic>Datasets</topic><topic>Health Sciences</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Outliers (statistics)</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Regression models</topic><topic>Regularization</topic><topic>sounds</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghatari, Amir Hossein</creatorcontrib><creatorcontrib>Aminghafari, Mina</creatorcontrib><creatorcontrib>Mohammadpour, Adel</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghatari, Amir Hossein</au><au>Aminghafari, Mina</au><au>Mohammadpour, Adel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Type of LASSO Regression Model with Cauchy Noise</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><stitle>JABES</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>29</volume><issue>2</issue><spage>277</spage><epage>300</epage><pages>277-300</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define AIC and BIC type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13253-023-00583-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9887-8385</orcidid><orcidid>https://orcid.org/0000-0002-5079-7025</orcidid><orcidid>https://orcid.org/0000-0002-0808-1250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1085-7117
ispartof Journal of agricultural, biological, and environmental statistics, 2024-06, Vol.29 (2), p.277-300
issn 1085-7117
1537-2693
language eng
recordid cdi_proquest_miscellaneous_3153675389
source Springer Nature - Complete Springer Journals
subjects Agriculture
Biostatistics
data collection
Datasets
Health Sciences
Mathematics and Statistics
Medicine
Monitoring/Environmental Analysis
Outliers (statistics)
Regression analysis
Regression coefficients
Regression models
Regularization
sounds
Statistics
Statistics for Life Sciences
title A New Type of LASSO Regression Model with Cauchy Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Type%20of%20LASSO%20Regression%20Model%20with%20Cauchy%20Noise&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Ghatari,%20Amir%20Hossein&rft.date=2024-06-01&rft.volume=29&rft.issue=2&rft.spage=277&rft.epage=300&rft.pages=277-300&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-023-00583-w&rft_dat=%3Cproquest_cross%3E3050684595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050684595&rft_id=info:pmid/&rfr_iscdi=true