A New Type of LASSO Regression Model with Cauchy Noise
Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises usi...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2024-06, Vol.29 (2), p.277-300 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 300 |
---|---|
container_issue | 2 |
container_start_page | 277 |
container_title | Journal of agricultural, biological, and environmental statistics |
container_volume | 29 |
creator | Ghatari, Amir Hossein Aminghafari, Mina Mohammadpour, Adel |
description | Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define
AIC
and
BIC
type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method. |
doi_str_mv | 10.1007/s13253-023-00583-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153675389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050684595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-1650511fc887d7f24c2744c5ba651e22bb0bb6dfe3612c16c334c28d7dbf5ad53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoqNU_4CngxcvqJLNJtsdS_ILagq3nsJvNtlu2m5q0LP33pq4gePAQJofnfZl5CLlhcM8A1ENgyAUmwOMDkWHSnZALJlAlXA7xNP4hE4liTJ2TyxDWAAwl8AsiR3RqO7o4bC11FZ2M5vMZfbdLb0OoXUvfXGkb2tW7FR3ne7M60Kmrg70iZ1XeBHv9Mwfk4-lxMX5JJrPn1_FokhgE3CVMChCMVSbLVKkqnhqu0tSIIpeCWc6LAopClpVFybhh0iBGJCtVWVQiLwUOyF3fu_Xuc2_DTm_qYGzT5K11-6Ax3iiVwGwY0ds_6NrtfRu30wgCZJaK4bGQ95TxLgRvK7319Sb3B81AH1XqXqWOKvW3St3FEPahEOF2af1v9T-pLxR_dBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050684595</pqid></control><display><type>article</type><title>A New Type of LASSO Regression Model with Cauchy Noise</title><source>Springer Nature - Complete Springer Journals</source><creator>Ghatari, Amir Hossein ; Aminghafari, Mina ; Mohammadpour, Adel</creator><creatorcontrib>Ghatari, Amir Hossein ; Aminghafari, Mina ; Mohammadpour, Adel</creatorcontrib><description>Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define
AIC
and
BIC
type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-023-00583-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Biostatistics ; data collection ; Datasets ; Health Sciences ; Mathematics and Statistics ; Medicine ; Monitoring/Environmental Analysis ; Outliers (statistics) ; Regression analysis ; Regression coefficients ; Regression models ; Regularization ; sounds ; Statistics ; Statistics for Life Sciences</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2024-06, Vol.29 (2), p.277-300</ispartof><rights>International Biometric Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-1650511fc887d7f24c2744c5ba651e22bb0bb6dfe3612c16c334c28d7dbf5ad53</cites><orcidid>0000-0002-9887-8385 ; 0000-0002-5079-7025 ; 0000-0002-0808-1250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13253-023-00583-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13253-023-00583-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ghatari, Amir Hossein</creatorcontrib><creatorcontrib>Aminghafari, Mina</creatorcontrib><creatorcontrib>Mohammadpour, Adel</creatorcontrib><title>A New Type of LASSO Regression Model with Cauchy Noise</title><title>Journal of agricultural, biological, and environmental statistics</title><addtitle>JABES</addtitle><description>Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define
AIC
and
BIC
type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.</description><subject>Agriculture</subject><subject>Biostatistics</subject><subject>data collection</subject><subject>Datasets</subject><subject>Health Sciences</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Outliers (statistics)</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Regression models</subject><subject>Regularization</subject><subject>sounds</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoqNU_4CngxcvqJLNJtsdS_ILagq3nsJvNtlu2m5q0LP33pq4gePAQJofnfZl5CLlhcM8A1ENgyAUmwOMDkWHSnZALJlAlXA7xNP4hE4liTJ2TyxDWAAwl8AsiR3RqO7o4bC11FZ2M5vMZfbdLb0OoXUvfXGkb2tW7FR3ne7M60Kmrg70iZ1XeBHv9Mwfk4-lxMX5JJrPn1_FokhgE3CVMChCMVSbLVKkqnhqu0tSIIpeCWc6LAopClpVFybhh0iBGJCtVWVQiLwUOyF3fu_Xuc2_DTm_qYGzT5K11-6Ax3iiVwGwY0ds_6NrtfRu30wgCZJaK4bGQ95TxLgRvK7319Sb3B81AH1XqXqWOKvW3St3FEPahEOF2af1v9T-pLxR_dBE</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ghatari, Amir Hossein</creator><creator>Aminghafari, Mina</creator><creator>Mohammadpour, Adel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9887-8385</orcidid><orcidid>https://orcid.org/0000-0002-5079-7025</orcidid><orcidid>https://orcid.org/0000-0002-0808-1250</orcidid></search><sort><creationdate>20240601</creationdate><title>A New Type of LASSO Regression Model with Cauchy Noise</title><author>Ghatari, Amir Hossein ; Aminghafari, Mina ; Mohammadpour, Adel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-1650511fc887d7f24c2744c5ba651e22bb0bb6dfe3612c16c334c28d7dbf5ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Biostatistics</topic><topic>data collection</topic><topic>Datasets</topic><topic>Health Sciences</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Outliers (statistics)</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Regression models</topic><topic>Regularization</topic><topic>sounds</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghatari, Amir Hossein</creatorcontrib><creatorcontrib>Aminghafari, Mina</creatorcontrib><creatorcontrib>Mohammadpour, Adel</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghatari, Amir Hossein</au><au>Aminghafari, Mina</au><au>Mohammadpour, Adel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Type of LASSO Regression Model with Cauchy Noise</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><stitle>JABES</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>29</volume><issue>2</issue><spage>277</spage><epage>300</epage><pages>277-300</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define
AIC
and
BIC
type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13253-023-00583-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9887-8385</orcidid><orcidid>https://orcid.org/0000-0002-5079-7025</orcidid><orcidid>https://orcid.org/0000-0002-0808-1250</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-7117 |
ispartof | Journal of agricultural, biological, and environmental statistics, 2024-06, Vol.29 (2), p.277-300 |
issn | 1085-7117 1537-2693 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153675389 |
source | Springer Nature - Complete Springer Journals |
subjects | Agriculture Biostatistics data collection Datasets Health Sciences Mathematics and Statistics Medicine Monitoring/Environmental Analysis Outliers (statistics) Regression analysis Regression coefficients Regression models Regularization sounds Statistics Statistics for Life Sciences |
title | A New Type of LASSO Regression Model with Cauchy Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Type%20of%20LASSO%20Regression%20Model%20with%20Cauchy%20Noise&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Ghatari,%20Amir%20Hossein&rft.date=2024-06-01&rft.volume=29&rft.issue=2&rft.spage=277&rft.epage=300&rft.pages=277-300&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-023-00583-w&rft_dat=%3Cproquest_cross%3E3050684595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050684595&rft_id=info:pmid/&rfr_iscdi=true |