Evolution of endosymbiosis-mediated nuclear calcium signaling in land plants
The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,1,2,3,4 su...
Gespeichert in:
Veröffentlicht in: | Current biology 2024-05, Vol.34 (10), p.2212-2220.e7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2220.e7 |
---|---|
container_issue | 10 |
container_start_page | 2212 |
container_title | Current biology |
container_volume | 34 |
creator | Lam, Anson H.C. Cooke, Aisling Wright, Hannah Lawson, David M. Charpentier, Myriam |
description | The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,1,2,3,4 suggesting that AM symbiosis was an important adaptation for plants in terrestrial environments.5 The activation of nuclear calcium signaling in roots is essential for AM within flowering plants.6 Given that the earliest land plants lacked roots, whether nuclear calcium signals are required for AM in non-flowering plants is unknown. To address this question, we explored the functional conservation of symbiont-induced nuclear calcium signals between the liverwort Marchantia paleacea and the legume Medicago truncatula. In M. paleacea, AM fungi penetrate the rhizoids and form arbuscules in the thalli.7 Here, we demonstrate that AM germinating spore exudate (GSE) activates nuclear calcium signals in the rhizoids of M. paleacea and that this activation is dependent on the nuclear-localized ion channel DOES NOT MAKE INFECTIONS 1 (MpaDMI1). However, unlike flowering plants, MpaDMI1-mediated calcium signaling is only required for the thalli colonization but not for the AM penetration within rhizoids. We further demonstrate that the mechanism of regulation of DMI1 has diverged between M. paleacea and M. truncatula, including a key amino acid residue essential to sustain DMI1 in an inactive state. Our study reveals functional evolution of nuclear calcium signaling between liverworts and flowering plants and opens new avenues of research into the mechanism of endosymbiosis signaling.
[Display omitted]
•The symbiosis-induced nuclear calcium signal is ancestral in land plants•DMI1 is required for arbuscular mycorrhiza colonization of M. paleacea thalli•AM colonization of M. paleacea rhizoid is independent of nuclear calcium signaling•The activation mechanism of DMI1 has diverged between M. paleacea and flowering plants
Lam et al. show that arbuscular-mycorrhiza-induced nuclear calcium signaling is ancestral in land plants. It is necessary for the colonization of liverwort thalli by arbuscular mycorrhiza, but not for the rhizoid infection. It is dependent on DMI1, whose gating mechanism has diverged between liverwort and flowering plants. |
doi_str_mv | 10.1016/j.cub.2024.03.063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153673704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982224004032</els_id><sourcerecordid>3153673704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-c741fac568e1a521e931394e0e627ff846e6f61f487a8cb23b5fdb14cbe8f9503</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EglL4ASwoI0uCX3FsMaGqPKRKLDBbjnNduUriEidI_fe4amGE5Z7lO0dXH0I3BBcEE3G_KexUFxRTXmBWYMFO0IzISuWY8_IUzbASOFeS0gt0GeMGY0KlEufogknBacnVDK2WX6GdRh_6LLgM-ibEXVf7EH3MO2i8GaHJ-sm2YIbMmtb6qcuiX_em9f06833Wmr7JtumO8QqdOdNGuD7mHH08Ld8XL_nq7fl18bjKLZNkzG3FiTO2FBKIKSkBxQhTHDAIWjknuQDhBHFcVkbamrK6dE1NuK1BOlViNkd3h93tED4niKPufLTQpicgTFEzUjJRsQrz_9HEYKFERRNKDqgdQowDOL0dfGeGnSZY733rjU6-9d63xkwn36lze5yf6qTrt_EjOAEPBwCSjy8Pg47WQ2-T2gHsqJvg_5j_Bsj8kI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043069672</pqid></control><display><type>article</type><title>Evolution of endosymbiosis-mediated nuclear calcium signaling in land plants</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lam, Anson H.C. ; Cooke, Aisling ; Wright, Hannah ; Lawson, David M. ; Charpentier, Myriam</creator><creatorcontrib>Lam, Anson H.C. ; Cooke, Aisling ; Wright, Hannah ; Lawson, David M. ; Charpentier, Myriam</creatorcontrib><description>The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,1,2,3,4 suggesting that AM symbiosis was an important adaptation for plants in terrestrial environments.5 The activation of nuclear calcium signaling in roots is essential for AM within flowering plants.6 Given that the earliest land plants lacked roots, whether nuclear calcium signals are required for AM in non-flowering plants is unknown. To address this question, we explored the functional conservation of symbiont-induced nuclear calcium signals between the liverwort Marchantia paleacea and the legume Medicago truncatula. In M. paleacea, AM fungi penetrate the rhizoids and form arbuscules in the thalli.7 Here, we demonstrate that AM germinating spore exudate (GSE) activates nuclear calcium signals in the rhizoids of M. paleacea and that this activation is dependent on the nuclear-localized ion channel DOES NOT MAKE INFECTIONS 1 (MpaDMI1). However, unlike flowering plants, MpaDMI1-mediated calcium signaling is only required for the thalli colonization but not for the AM penetration within rhizoids. We further demonstrate that the mechanism of regulation of DMI1 has diverged between M. paleacea and M. truncatula, including a key amino acid residue essential to sustain DMI1 in an inactive state. Our study reveals functional evolution of nuclear calcium signaling between liverworts and flowering plants and opens new avenues of research into the mechanism of endosymbiosis signaling.
[Display omitted]
•The symbiosis-induced nuclear calcium signal is ancestral in land plants•DMI1 is required for arbuscular mycorrhiza colonization of M. paleacea thalli•AM colonization of M. paleacea rhizoid is independent of nuclear calcium signaling•The activation mechanism of DMI1 has diverged between M. paleacea and flowering plants
Lam et al. show that arbuscular-mycorrhiza-induced nuclear calcium signaling is ancestral in land plants. It is necessary for the colonization of liverwort thalli by arbuscular mycorrhiza, but not for the rhizoid infection. It is dependent on DMI1, whose gating mechanism has diverged between liverwort and flowering plants.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2024.03.063</identifier><identifier>PMID: 38642549</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>amino acids ; ancestry ; arbuscular mycorrhiza ; Biological Evolution ; calcium ; Calcium Signaling ; calcium signalling ; Cell Nucleus - metabolism ; Embryophyta - metabolism ; Embryophyta - physiology ; evolution ; ion channels ; legumes ; Marchantia ; Marchantia - genetics ; Marchantia - metabolism ; Marchantia - physiology ; Marchantia paleacea ; Medicago truncatula ; Medicago truncatula - genetics ; Medicago truncatula - metabolism ; Medicago truncatula - microbiology ; mosses and liverworts ; Mycorrhizae - physiology ; nucleus ; Plant Roots - metabolism ; Plant Roots - microbiology ; root nodule symbiosis ; spores ; Symbiosis ; thallus ; vesicular arbuscular mycorrhizae</subject><ispartof>Current biology, 2024-05, Vol.34 (10), p.2212-2220.e7</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c381t-c741fac568e1a521e931394e0e627ff846e6f61f487a8cb23b5fdb14cbe8f9503</cites><orcidid>0000-0003-3784-3039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982224004032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38642549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, Anson H.C.</creatorcontrib><creatorcontrib>Cooke, Aisling</creatorcontrib><creatorcontrib>Wright, Hannah</creatorcontrib><creatorcontrib>Lawson, David M.</creatorcontrib><creatorcontrib>Charpentier, Myriam</creatorcontrib><title>Evolution of endosymbiosis-mediated nuclear calcium signaling in land plants</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,1,2,3,4 suggesting that AM symbiosis was an important adaptation for plants in terrestrial environments.5 The activation of nuclear calcium signaling in roots is essential for AM within flowering plants.6 Given that the earliest land plants lacked roots, whether nuclear calcium signals are required for AM in non-flowering plants is unknown. To address this question, we explored the functional conservation of symbiont-induced nuclear calcium signals between the liverwort Marchantia paleacea and the legume Medicago truncatula. In M. paleacea, AM fungi penetrate the rhizoids and form arbuscules in the thalli.7 Here, we demonstrate that AM germinating spore exudate (GSE) activates nuclear calcium signals in the rhizoids of M. paleacea and that this activation is dependent on the nuclear-localized ion channel DOES NOT MAKE INFECTIONS 1 (MpaDMI1). However, unlike flowering plants, MpaDMI1-mediated calcium signaling is only required for the thalli colonization but not for the AM penetration within rhizoids. We further demonstrate that the mechanism of regulation of DMI1 has diverged between M. paleacea and M. truncatula, including a key amino acid residue essential to sustain DMI1 in an inactive state. Our study reveals functional evolution of nuclear calcium signaling between liverworts and flowering plants and opens new avenues of research into the mechanism of endosymbiosis signaling.
[Display omitted]
•The symbiosis-induced nuclear calcium signal is ancestral in land plants•DMI1 is required for arbuscular mycorrhiza colonization of M. paleacea thalli•AM colonization of M. paleacea rhizoid is independent of nuclear calcium signaling•The activation mechanism of DMI1 has diverged between M. paleacea and flowering plants
Lam et al. show that arbuscular-mycorrhiza-induced nuclear calcium signaling is ancestral in land plants. It is necessary for the colonization of liverwort thalli by arbuscular mycorrhiza, but not for the rhizoid infection. It is dependent on DMI1, whose gating mechanism has diverged between liverwort and flowering plants.</description><subject>amino acids</subject><subject>ancestry</subject><subject>arbuscular mycorrhiza</subject><subject>Biological Evolution</subject><subject>calcium</subject><subject>Calcium Signaling</subject><subject>calcium signalling</subject><subject>Cell Nucleus - metabolism</subject><subject>Embryophyta - metabolism</subject><subject>Embryophyta - physiology</subject><subject>evolution</subject><subject>ion channels</subject><subject>legumes</subject><subject>Marchantia</subject><subject>Marchantia - genetics</subject><subject>Marchantia - metabolism</subject><subject>Marchantia - physiology</subject><subject>Marchantia paleacea</subject><subject>Medicago truncatula</subject><subject>Medicago truncatula - genetics</subject><subject>Medicago truncatula - metabolism</subject><subject>Medicago truncatula - microbiology</subject><subject>mosses and liverworts</subject><subject>Mycorrhizae - physiology</subject><subject>nucleus</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - microbiology</subject><subject>root nodule symbiosis</subject><subject>spores</subject><subject>Symbiosis</subject><subject>thallus</subject><subject>vesicular arbuscular mycorrhizae</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAUhS0EglL4ASwoI0uCX3FsMaGqPKRKLDBbjnNduUriEidI_fe4amGE5Z7lO0dXH0I3BBcEE3G_KexUFxRTXmBWYMFO0IzISuWY8_IUzbASOFeS0gt0GeMGY0KlEufogknBacnVDK2WX6GdRh_6LLgM-ibEXVf7EH3MO2i8GaHJ-sm2YIbMmtb6qcuiX_em9f06833Wmr7JtumO8QqdOdNGuD7mHH08Ld8XL_nq7fl18bjKLZNkzG3FiTO2FBKIKSkBxQhTHDAIWjknuQDhBHFcVkbamrK6dE1NuK1BOlViNkd3h93tED4niKPufLTQpicgTFEzUjJRsQrz_9HEYKFERRNKDqgdQowDOL0dfGeGnSZY733rjU6-9d63xkwn36lze5yf6qTrt_EjOAEPBwCSjy8Pg47WQ2-T2gHsqJvg_5j_Bsj8kI4</recordid><startdate>20240520</startdate><enddate>20240520</enddate><creator>Lam, Anson H.C.</creator><creator>Cooke, Aisling</creator><creator>Wright, Hannah</creator><creator>Lawson, David M.</creator><creator>Charpentier, Myriam</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3784-3039</orcidid></search><sort><creationdate>20240520</creationdate><title>Evolution of endosymbiosis-mediated nuclear calcium signaling in land plants</title><author>Lam, Anson H.C. ; Cooke, Aisling ; Wright, Hannah ; Lawson, David M. ; Charpentier, Myriam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-c741fac568e1a521e931394e0e627ff846e6f61f487a8cb23b5fdb14cbe8f9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>amino acids</topic><topic>ancestry</topic><topic>arbuscular mycorrhiza</topic><topic>Biological Evolution</topic><topic>calcium</topic><topic>Calcium Signaling</topic><topic>calcium signalling</topic><topic>Cell Nucleus - metabolism</topic><topic>Embryophyta - metabolism</topic><topic>Embryophyta - physiology</topic><topic>evolution</topic><topic>ion channels</topic><topic>legumes</topic><topic>Marchantia</topic><topic>Marchantia - genetics</topic><topic>Marchantia - metabolism</topic><topic>Marchantia - physiology</topic><topic>Marchantia paleacea</topic><topic>Medicago truncatula</topic><topic>Medicago truncatula - genetics</topic><topic>Medicago truncatula - metabolism</topic><topic>Medicago truncatula - microbiology</topic><topic>mosses and liverworts</topic><topic>Mycorrhizae - physiology</topic><topic>nucleus</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - microbiology</topic><topic>root nodule symbiosis</topic><topic>spores</topic><topic>Symbiosis</topic><topic>thallus</topic><topic>vesicular arbuscular mycorrhizae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Anson H.C.</creatorcontrib><creatorcontrib>Cooke, Aisling</creatorcontrib><creatorcontrib>Wright, Hannah</creatorcontrib><creatorcontrib>Lawson, David M.</creatorcontrib><creatorcontrib>Charpentier, Myriam</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, Anson H.C.</au><au>Cooke, Aisling</au><au>Wright, Hannah</au><au>Lawson, David M.</au><au>Charpentier, Myriam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of endosymbiosis-mediated nuclear calcium signaling in land plants</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2024-05-20</date><risdate>2024</risdate><volume>34</volume><issue>10</issue><spage>2212</spage><epage>2220.e7</epage><pages>2212-2220.e7</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,1,2,3,4 suggesting that AM symbiosis was an important adaptation for plants in terrestrial environments.5 The activation of nuclear calcium signaling in roots is essential for AM within flowering plants.6 Given that the earliest land plants lacked roots, whether nuclear calcium signals are required for AM in non-flowering plants is unknown. To address this question, we explored the functional conservation of symbiont-induced nuclear calcium signals between the liverwort Marchantia paleacea and the legume Medicago truncatula. In M. paleacea, AM fungi penetrate the rhizoids and form arbuscules in the thalli.7 Here, we demonstrate that AM germinating spore exudate (GSE) activates nuclear calcium signals in the rhizoids of M. paleacea and that this activation is dependent on the nuclear-localized ion channel DOES NOT MAKE INFECTIONS 1 (MpaDMI1). However, unlike flowering plants, MpaDMI1-mediated calcium signaling is only required for the thalli colonization but not for the AM penetration within rhizoids. We further demonstrate that the mechanism of regulation of DMI1 has diverged between M. paleacea and M. truncatula, including a key amino acid residue essential to sustain DMI1 in an inactive state. Our study reveals functional evolution of nuclear calcium signaling between liverworts and flowering plants and opens new avenues of research into the mechanism of endosymbiosis signaling.
[Display omitted]
•The symbiosis-induced nuclear calcium signal is ancestral in land plants•DMI1 is required for arbuscular mycorrhiza colonization of M. paleacea thalli•AM colonization of M. paleacea rhizoid is independent of nuclear calcium signaling•The activation mechanism of DMI1 has diverged between M. paleacea and flowering plants
Lam et al. show that arbuscular-mycorrhiza-induced nuclear calcium signaling is ancestral in land plants. It is necessary for the colonization of liverwort thalli by arbuscular mycorrhiza, but not for the rhizoid infection. It is dependent on DMI1, whose gating mechanism has diverged between liverwort and flowering plants.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>38642549</pmid><doi>10.1016/j.cub.2024.03.063</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3784-3039</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2024-05, Vol.34 (10), p.2212-2220.e7 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153673704 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | amino acids ancestry arbuscular mycorrhiza Biological Evolution calcium Calcium Signaling calcium signalling Cell Nucleus - metabolism Embryophyta - metabolism Embryophyta - physiology evolution ion channels legumes Marchantia Marchantia - genetics Marchantia - metabolism Marchantia - physiology Marchantia paleacea Medicago truncatula Medicago truncatula - genetics Medicago truncatula - metabolism Medicago truncatula - microbiology mosses and liverworts Mycorrhizae - physiology nucleus Plant Roots - metabolism Plant Roots - microbiology root nodule symbiosis spores Symbiosis thallus vesicular arbuscular mycorrhizae |
title | Evolution of endosymbiosis-mediated nuclear calcium signaling in land plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20endosymbiosis-mediated%20nuclear%20calcium%20signaling%20in%20land%20plants&rft.jtitle=Current%20biology&rft.au=Lam,%20Anson%20H.C.&rft.date=2024-05-20&rft.volume=34&rft.issue=10&rft.spage=2212&rft.epage=2220.e7&rft.pages=2212-2220.e7&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2024.03.063&rft_dat=%3Cproquest_cross%3E3153673704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3043069672&rft_id=info:pmid/38642549&rft_els_id=S0960982224004032&rfr_iscdi=true |