TMT-based quantitative proteomics and non-targeted metabolomic analyses reveal the inactivation mechanism of cold atmospheric plasma against Pseudomonas aeruginosa

Cold atmospheric plasma (CAP) has emerged as a potent nonthermal inactivation strategy in food processing over the past two decades. However, the underlying mechanisms of inactivation remain unclear. In this study, Tandem Mass Tag (TMT)-based quantitative proteomics and non-targeted metabolomic anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food control 2024-11, Vol.165, p.110608, Article 110608
Hauptverfasser: Zhao, Yijie, Shao, Lele, Duan, Miaolin, Liu, Yanan, Sun, Yingying, Zou, Bo, Wang, Han, Dai, Ruitong, Li, Xingmin, Jia, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110608
container_title Food control
container_volume 165
creator Zhao, Yijie
Shao, Lele
Duan, Miaolin
Liu, Yanan
Sun, Yingying
Zou, Bo
Wang, Han
Dai, Ruitong
Li, Xingmin
Jia, Fei
description Cold atmospheric plasma (CAP) has emerged as a potent nonthermal inactivation strategy in food processing over the past two decades. However, the underlying mechanisms of inactivation remain unclear. In this study, Tandem Mass Tag (TMT)-based quantitative proteomics and non-targeted metabolomic analyses were conducted to investigate the responses of Pseudomonas aeruginosa to CAP. The results revealed significant alterations in 170 differentially expressed proteins (DEPs) and 490 differential metabolites (DMs) upon air-CAP treatment. P. aeruginosa demonstrated a regulatory response at the transcription and translation levels, upregulating proteins to resist external stimuli. Conversely, a predominant down-regulation of proteins indicated that CAP treatment profoundly disrupted the cell structure, inhibiting movement, colonization ability, virulence protein secretion, and bacterial biofilm formation. Moreover, CAP compromised the bacterium's ability to acquire energy, thereby disrupting its defense mechanisms, reducing drug resistance, and potentially leading to bacterial death. This comprehensive study enhances our understanding of the mode of action of air-CAP against P. aeruginosa. The findings provide a robust experimental foundation for considering CAP as an effective inactivation method in the food industry. [Display omitted] •P. aeruginosa treated by air-CAP were studied by proteomic and metabolomic methods.•Membrane damage, reduction of motility and antibiotic resistance were observed.•Suppression of defense mechanism, energy metabolism and signal transduction were observed.•CAP could inhibit transcription and translation function of P. aeruginosa.
doi_str_mv 10.1016/j.foodcont.2024.110608
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153671056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956713524003256</els_id><sourcerecordid>3153671056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-6116471f5fb699bd3233667474568e0d702ea23a4689dd42b9249e3fa4eeb6e83</originalsourceid><addsrcrecordid>eNqFkc1u2zAQhIWiAeqmfYWCx17k8keipFuLoH9AivbgnIkVubJpSKTDpQzkefKioeH23NMusDPfYjBV9UHwreBCfzpupxidjSFvJZfNVgiuef-q2oi-U3Un5PC62vCh1WVX7ZvqLdGRc9FxwTfV8-7Xrh6B0LHHFUL2GbI_IzulmDEu3hKD4FiIoc6Q9piLcMEMY5wv13KE-YmQWMIzwszyAZkPYAukgGIoYnuA4GlhcWI2zo5BXiKdDpiK_TQDLcBgDz5QZn8IVxeXGKC8xbTufYgE76qbCWbC93_nbfXw7evu7kd9__v7z7sv97WVUuZaC6GbTkztNOphGJ2SSmndNV3T6h6567hEkAoa3Q_ONXIcZDOgmqBBHDX26rb6eOWW8I8rUjaLJ4vzDAHjSkaJVulO8FYXqb5KbYpECSdzSn6B9GQEN5dWzNH8a8VcWjHXVorx89WIJcjZYzJkPQaLzie02bjo_4d4ASDXneU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153671056</pqid></control><display><type>article</type><title>TMT-based quantitative proteomics and non-targeted metabolomic analyses reveal the inactivation mechanism of cold atmospheric plasma against Pseudomonas aeruginosa</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Yijie ; Shao, Lele ; Duan, Miaolin ; Liu, Yanan ; Sun, Yingying ; Zou, Bo ; Wang, Han ; Dai, Ruitong ; Li, Xingmin ; Jia, Fei</creator><creatorcontrib>Zhao, Yijie ; Shao, Lele ; Duan, Miaolin ; Liu, Yanan ; Sun, Yingying ; Zou, Bo ; Wang, Han ; Dai, Ruitong ; Li, Xingmin ; Jia, Fei</creatorcontrib><description>Cold atmospheric plasma (CAP) has emerged as a potent nonthermal inactivation strategy in food processing over the past two decades. However, the underlying mechanisms of inactivation remain unclear. In this study, Tandem Mass Tag (TMT)-based quantitative proteomics and non-targeted metabolomic analyses were conducted to investigate the responses of Pseudomonas aeruginosa to CAP. The results revealed significant alterations in 170 differentially expressed proteins (DEPs) and 490 differential metabolites (DMs) upon air-CAP treatment. P. aeruginosa demonstrated a regulatory response at the transcription and translation levels, upregulating proteins to resist external stimuli. Conversely, a predominant down-regulation of proteins indicated that CAP treatment profoundly disrupted the cell structure, inhibiting movement, colonization ability, virulence protein secretion, and bacterial biofilm formation. Moreover, CAP compromised the bacterium's ability to acquire energy, thereby disrupting its defense mechanisms, reducing drug resistance, and potentially leading to bacterial death. This comprehensive study enhances our understanding of the mode of action of air-CAP against P. aeruginosa. The findings provide a robust experimental foundation for considering CAP as an effective inactivation method in the food industry. [Display omitted] •P. aeruginosa treated by air-CAP were studied by proteomic and metabolomic methods.•Membrane damage, reduction of motility and antibiotic resistance were observed.•Suppression of defense mechanism, energy metabolism and signal transduction were observed.•CAP could inhibit transcription and translation function of P. aeruginosa.</description><identifier>ISSN: 0956-7135</identifier><identifier>EISSN: 1873-7129</identifier><identifier>DOI: 10.1016/j.foodcont.2024.110608</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>bacteria ; biofilm ; cell structures ; Cold atmospheric plasma ; colonizing ability ; death ; drug resistance ; energy ; food safety ; gene expression regulation ; Inactivation mechanisms ; mechanism of action ; metabolites ; metabolomics ; nonthermal processing ; protein secretion ; proteomics ; Pseudomonas aeruginosa ; Quantitative proteomics analysis ; virulence</subject><ispartof>Food control, 2024-11, Vol.165, p.110608, Article 110608</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c222t-6116471f5fb699bd3233667474568e0d702ea23a4689dd42b9249e3fa4eeb6e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956713524003256$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhao, Yijie</creatorcontrib><creatorcontrib>Shao, Lele</creatorcontrib><creatorcontrib>Duan, Miaolin</creatorcontrib><creatorcontrib>Liu, Yanan</creatorcontrib><creatorcontrib>Sun, Yingying</creatorcontrib><creatorcontrib>Zou, Bo</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Dai, Ruitong</creatorcontrib><creatorcontrib>Li, Xingmin</creatorcontrib><creatorcontrib>Jia, Fei</creatorcontrib><title>TMT-based quantitative proteomics and non-targeted metabolomic analyses reveal the inactivation mechanism of cold atmospheric plasma against Pseudomonas aeruginosa</title><title>Food control</title><description>Cold atmospheric plasma (CAP) has emerged as a potent nonthermal inactivation strategy in food processing over the past two decades. However, the underlying mechanisms of inactivation remain unclear. In this study, Tandem Mass Tag (TMT)-based quantitative proteomics and non-targeted metabolomic analyses were conducted to investigate the responses of Pseudomonas aeruginosa to CAP. The results revealed significant alterations in 170 differentially expressed proteins (DEPs) and 490 differential metabolites (DMs) upon air-CAP treatment. P. aeruginosa demonstrated a regulatory response at the transcription and translation levels, upregulating proteins to resist external stimuli. Conversely, a predominant down-regulation of proteins indicated that CAP treatment profoundly disrupted the cell structure, inhibiting movement, colonization ability, virulence protein secretion, and bacterial biofilm formation. Moreover, CAP compromised the bacterium's ability to acquire energy, thereby disrupting its defense mechanisms, reducing drug resistance, and potentially leading to bacterial death. This comprehensive study enhances our understanding of the mode of action of air-CAP against P. aeruginosa. The findings provide a robust experimental foundation for considering CAP as an effective inactivation method in the food industry. [Display omitted] •P. aeruginosa treated by air-CAP were studied by proteomic and metabolomic methods.•Membrane damage, reduction of motility and antibiotic resistance were observed.•Suppression of defense mechanism, energy metabolism and signal transduction were observed.•CAP could inhibit transcription and translation function of P. aeruginosa.</description><subject>bacteria</subject><subject>biofilm</subject><subject>cell structures</subject><subject>Cold atmospheric plasma</subject><subject>colonizing ability</subject><subject>death</subject><subject>drug resistance</subject><subject>energy</subject><subject>food safety</subject><subject>gene expression regulation</subject><subject>Inactivation mechanisms</subject><subject>mechanism of action</subject><subject>metabolites</subject><subject>metabolomics</subject><subject>nonthermal processing</subject><subject>protein secretion</subject><subject>proteomics</subject><subject>Pseudomonas aeruginosa</subject><subject>Quantitative proteomics analysis</subject><subject>virulence</subject><issn>0956-7135</issn><issn>1873-7129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u2zAQhIWiAeqmfYWCx17k8keipFuLoH9AivbgnIkVubJpSKTDpQzkefKioeH23NMusDPfYjBV9UHwreBCfzpupxidjSFvJZfNVgiuef-q2oi-U3Un5PC62vCh1WVX7ZvqLdGRc9FxwTfV8-7Xrh6B0LHHFUL2GbI_IzulmDEu3hKD4FiIoc6Q9piLcMEMY5wv13KE-YmQWMIzwszyAZkPYAukgGIoYnuA4GlhcWI2zo5BXiKdDpiK_TQDLcBgDz5QZn8IVxeXGKC8xbTufYgE76qbCWbC93_nbfXw7evu7kd9__v7z7sv97WVUuZaC6GbTkztNOphGJ2SSmndNV3T6h6567hEkAoa3Q_ONXIcZDOgmqBBHDX26rb6eOWW8I8rUjaLJ4vzDAHjSkaJVulO8FYXqb5KbYpECSdzSn6B9GQEN5dWzNH8a8VcWjHXVorx89WIJcjZYzJkPQaLzie02bjo_4d4ASDXneU</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Zhao, Yijie</creator><creator>Shao, Lele</creator><creator>Duan, Miaolin</creator><creator>Liu, Yanan</creator><creator>Sun, Yingying</creator><creator>Zou, Bo</creator><creator>Wang, Han</creator><creator>Dai, Ruitong</creator><creator>Li, Xingmin</creator><creator>Jia, Fei</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202411</creationdate><title>TMT-based quantitative proteomics and non-targeted metabolomic analyses reveal the inactivation mechanism of cold atmospheric plasma against Pseudomonas aeruginosa</title><author>Zhao, Yijie ; Shao, Lele ; Duan, Miaolin ; Liu, Yanan ; Sun, Yingying ; Zou, Bo ; Wang, Han ; Dai, Ruitong ; Li, Xingmin ; Jia, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-6116471f5fb699bd3233667474568e0d702ea23a4689dd42b9249e3fa4eeb6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bacteria</topic><topic>biofilm</topic><topic>cell structures</topic><topic>Cold atmospheric plasma</topic><topic>colonizing ability</topic><topic>death</topic><topic>drug resistance</topic><topic>energy</topic><topic>food safety</topic><topic>gene expression regulation</topic><topic>Inactivation mechanisms</topic><topic>mechanism of action</topic><topic>metabolites</topic><topic>metabolomics</topic><topic>nonthermal processing</topic><topic>protein secretion</topic><topic>proteomics</topic><topic>Pseudomonas aeruginosa</topic><topic>Quantitative proteomics analysis</topic><topic>virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yijie</creatorcontrib><creatorcontrib>Shao, Lele</creatorcontrib><creatorcontrib>Duan, Miaolin</creatorcontrib><creatorcontrib>Liu, Yanan</creatorcontrib><creatorcontrib>Sun, Yingying</creatorcontrib><creatorcontrib>Zou, Bo</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Dai, Ruitong</creatorcontrib><creatorcontrib>Li, Xingmin</creatorcontrib><creatorcontrib>Jia, Fei</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Food control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yijie</au><au>Shao, Lele</au><au>Duan, Miaolin</au><au>Liu, Yanan</au><au>Sun, Yingying</au><au>Zou, Bo</au><au>Wang, Han</au><au>Dai, Ruitong</au><au>Li, Xingmin</au><au>Jia, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TMT-based quantitative proteomics and non-targeted metabolomic analyses reveal the inactivation mechanism of cold atmospheric plasma against Pseudomonas aeruginosa</atitle><jtitle>Food control</jtitle><date>2024-11</date><risdate>2024</risdate><volume>165</volume><spage>110608</spage><pages>110608-</pages><artnum>110608</artnum><issn>0956-7135</issn><eissn>1873-7129</eissn><abstract>Cold atmospheric plasma (CAP) has emerged as a potent nonthermal inactivation strategy in food processing over the past two decades. However, the underlying mechanisms of inactivation remain unclear. In this study, Tandem Mass Tag (TMT)-based quantitative proteomics and non-targeted metabolomic analyses were conducted to investigate the responses of Pseudomonas aeruginosa to CAP. The results revealed significant alterations in 170 differentially expressed proteins (DEPs) and 490 differential metabolites (DMs) upon air-CAP treatment. P. aeruginosa demonstrated a regulatory response at the transcription and translation levels, upregulating proteins to resist external stimuli. Conversely, a predominant down-regulation of proteins indicated that CAP treatment profoundly disrupted the cell structure, inhibiting movement, colonization ability, virulence protein secretion, and bacterial biofilm formation. Moreover, CAP compromised the bacterium's ability to acquire energy, thereby disrupting its defense mechanisms, reducing drug resistance, and potentially leading to bacterial death. This comprehensive study enhances our understanding of the mode of action of air-CAP against P. aeruginosa. The findings provide a robust experimental foundation for considering CAP as an effective inactivation method in the food industry. [Display omitted] •P. aeruginosa treated by air-CAP were studied by proteomic and metabolomic methods.•Membrane damage, reduction of motility and antibiotic resistance were observed.•Suppression of defense mechanism, energy metabolism and signal transduction were observed.•CAP could inhibit transcription and translation function of P. aeruginosa.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.foodcont.2024.110608</doi></addata></record>
fulltext fulltext
identifier ISSN: 0956-7135
ispartof Food control, 2024-11, Vol.165, p.110608, Article 110608
issn 0956-7135
1873-7129
language eng
recordid cdi_proquest_miscellaneous_3153671056
source Elsevier ScienceDirect Journals
subjects bacteria
biofilm
cell structures
Cold atmospheric plasma
colonizing ability
death
drug resistance
energy
food safety
gene expression regulation
Inactivation mechanisms
mechanism of action
metabolites
metabolomics
nonthermal processing
protein secretion
proteomics
Pseudomonas aeruginosa
Quantitative proteomics analysis
virulence
title TMT-based quantitative proteomics and non-targeted metabolomic analyses reveal the inactivation mechanism of cold atmospheric plasma against Pseudomonas aeruginosa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TMT-based%20quantitative%20proteomics%20and%20non-targeted%20metabolomic%20analyses%20reveal%20the%20inactivation%20mechanism%20of%20cold%20atmospheric%20plasma%20against%20Pseudomonas%20aeruginosa&rft.jtitle=Food%20control&rft.au=Zhao,%20Yijie&rft.date=2024-11&rft.volume=165&rft.spage=110608&rft.pages=110608-&rft.artnum=110608&rft.issn=0956-7135&rft.eissn=1873-7129&rft_id=info:doi/10.1016/j.foodcont.2024.110608&rft_dat=%3Cproquest_cross%3E3153671056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153671056&rft_id=info:pmid/&rft_els_id=S0956713524003256&rfr_iscdi=true