CO2 reforming of biodiesel-waste glycerol on nanostructure Ni-SiO2.MgO catalysts for syngas production: Influence of the catalyst chemical composition

[Display omitted] •xNi-ySiO2.MgO is made using a one-step method as a catalyst for syngas production.•Catalyst composition significantly influenced characteristics and reforming activity.•10Ni-SiO2.MgO catalyst possessed the highest glycerol conversion of 50% at 750 °C.•MgO addition influenced carbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2024-09, Vol.315, p.118749, Article 118749
Hauptverfasser: Pirzadi, Zahra, Meshkani, Fereshteh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118749
container_title Energy conversion and management
container_volume 315
creator Pirzadi, Zahra
Meshkani, Fereshteh
description [Display omitted] •xNi-ySiO2.MgO is made using a one-step method as a catalyst for syngas production.•Catalyst composition significantly influenced characteristics and reforming activity.•10Ni-SiO2.MgO catalyst possessed the highest glycerol conversion of 50% at 750 °C.•MgO addition influenced carbon deposition nature. This study investigated the potential of CO2 reforming of biodiesel-waste glycerol for synthesis gas (syngas) production using xNi-ySiO2.MgO catalysts. Catalysts were prepared with varying nickel loading and SiO2 to MgO ratios (0.5–2) using a one-step synthesis route. The catalysts exhibited a high BET surface area of 545 m2 g−1. The impact of catalyst composition, including nickel content and SiO2 to MgO ratio, on the physicochemical characteristics and catalytic behavior during glycerol CO2 reforming was examined. Catalytic performance evaluation revealed that the catalyst with a SiO2/MgO molar ratio of 1:1 and the highest nickel content (8.01 wt%) displayed the best activity (50 % glycerol conversion at 750 °C) and stability under harsh reforming conditions (GHSV = 7.2 × 104 mL h−1 gcat-1). This catalyst had a small crystalline size (8.5 nm) and a higher degree of NiO reduction, as confirmed by TPR and XRD analysis. In contrast, the Ni-SiO2 catalyst exhibited poor catalytic behavior due to lower reducibility and metal dispersion. Encapsulated carbon formation further reduced its catalytic performance. The combination of SiO2 and MgO in the Ni-based catalysts synergistically improved their catalytic performance. The results emphasize the importance of catalyst composition, including nickel content and SiO2 to MgO ratio, in determining the physicochemical properties and catalytic behavior during glycerol dry reforming. In conclusion, CO2 reforming of biodiesel-waste glycerol using xNi-ySiO2.MgO catalysts shows promise for sustainable syngas production. The findings contribute to the utilization of glycerol waste and offer opportunities for reducing environmental impact through efficient conversion into valuable syngas.
doi_str_mv 10.1016/j.enconman.2024.118749
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153670639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890424006903</els_id><sourcerecordid>3153670639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-9d226b86dbc37e3d5c08088088100cfb4fdf667cd010ad7dd72451ecbc772ac43</originalsourceid><addsrcrecordid>eNqFkM2O1DAQhHMAiWXhFZCPXBLaTsZOOIFG_Ky0MAfgbDntzqxHjj3YDmhehOcl0QBXpJb6UlVd_VXVCw4NBy5fnRoKGMNsQiNAdA3nveqGR9UN8EHW_QDdk-ppzicAaHcgb6pf-4NgiaaYZheOLE5sdNE6yuTrnyYXYkd_QUrRsxhYMCHmkhYsSyL22dVf3EE0n44HhqYYf8klszWK5Us4mszOKdpV62J4ze7C5Je1HG03ygP9czB8oNmh8QzjfI7Zbfpn1ePJ-EzP_-zb6tv7d1_3H-v7w4e7_dv7GgWoUg9WCDn20o7YKmrtDqGHfhsOgNPYTXaSUqEFDsYqa5XodpxwRKWEwa69rV5ec9eq3xfKRc8uI3lvAsUl65bvWqlAtsMqlVcpppjzikyfk5tNumgOeoOvT_ovfL3B11f4q_HN1UjrIz8cJZ3RbSSsS4RF2-j-F_EbN6KWrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153670639</pqid></control><display><type>article</type><title>CO2 reforming of biodiesel-waste glycerol on nanostructure Ni-SiO2.MgO catalysts for syngas production: Influence of the catalyst chemical composition</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pirzadi, Zahra ; Meshkani, Fereshteh</creator><creatorcontrib>Pirzadi, Zahra ; Meshkani, Fereshteh</creatorcontrib><description>[Display omitted] •xNi-ySiO2.MgO is made using a one-step method as a catalyst for syngas production.•Catalyst composition significantly influenced characteristics and reforming activity.•10Ni-SiO2.MgO catalyst possessed the highest glycerol conversion of 50% at 750 °C.•MgO addition influenced carbon deposition nature. This study investigated the potential of CO2 reforming of biodiesel-waste glycerol for synthesis gas (syngas) production using xNi-ySiO2.MgO catalysts. Catalysts were prepared with varying nickel loading and SiO2 to MgO ratios (0.5–2) using a one-step synthesis route. The catalysts exhibited a high BET surface area of 545 m2 g−1. The impact of catalyst composition, including nickel content and SiO2 to MgO ratio, on the physicochemical characteristics and catalytic behavior during glycerol CO2 reforming was examined. Catalytic performance evaluation revealed that the catalyst with a SiO2/MgO molar ratio of 1:1 and the highest nickel content (8.01 wt%) displayed the best activity (50 % glycerol conversion at 750 °C) and stability under harsh reforming conditions (GHSV = 7.2 × 104 mL h−1 gcat-1). This catalyst had a small crystalline size (8.5 nm) and a higher degree of NiO reduction, as confirmed by TPR and XRD analysis. In contrast, the Ni-SiO2 catalyst exhibited poor catalytic behavior due to lower reducibility and metal dispersion. Encapsulated carbon formation further reduced its catalytic performance. The combination of SiO2 and MgO in the Ni-based catalysts synergistically improved their catalytic performance. The results emphasize the importance of catalyst composition, including nickel content and SiO2 to MgO ratio, in determining the physicochemical properties and catalytic behavior during glycerol dry reforming. In conclusion, CO2 reforming of biodiesel-waste glycerol using xNi-ySiO2.MgO catalysts shows promise for sustainable syngas production. The findings contribute to the utilization of glycerol waste and offer opportunities for reducing environmental impact through efficient conversion into valuable syngas.</description><identifier>ISSN: 0196-8904</identifier><identifier>DOI: 10.1016/j.enconman.2024.118749</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>administrative management ; carbon ; carbon dioxide ; catalysts ; catalytic activity ; chemical composition ; Dry reforming ; encapsulation ; energy conversion ; environmental impact ; Glycerol ; Magnesium silicate ; nanomaterials ; Nickel ; nickel oxide ; surface area ; Syngas ; synthesis gas ; wastes</subject><ispartof>Energy conversion and management, 2024-09, Vol.315, p.118749, Article 118749</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c207t-9d226b86dbc37e3d5c08088088100cfb4fdf667cd010ad7dd72451ecbc772ac43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890424006903$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Pirzadi, Zahra</creatorcontrib><creatorcontrib>Meshkani, Fereshteh</creatorcontrib><title>CO2 reforming of biodiesel-waste glycerol on nanostructure Ni-SiO2.MgO catalysts for syngas production: Influence of the catalyst chemical composition</title><title>Energy conversion and management</title><description>[Display omitted] •xNi-ySiO2.MgO is made using a one-step method as a catalyst for syngas production.•Catalyst composition significantly influenced characteristics and reforming activity.•10Ni-SiO2.MgO catalyst possessed the highest glycerol conversion of 50% at 750 °C.•MgO addition influenced carbon deposition nature. This study investigated the potential of CO2 reforming of biodiesel-waste glycerol for synthesis gas (syngas) production using xNi-ySiO2.MgO catalysts. Catalysts were prepared with varying nickel loading and SiO2 to MgO ratios (0.5–2) using a one-step synthesis route. The catalysts exhibited a high BET surface area of 545 m2 g−1. The impact of catalyst composition, including nickel content and SiO2 to MgO ratio, on the physicochemical characteristics and catalytic behavior during glycerol CO2 reforming was examined. Catalytic performance evaluation revealed that the catalyst with a SiO2/MgO molar ratio of 1:1 and the highest nickel content (8.01 wt%) displayed the best activity (50 % glycerol conversion at 750 °C) and stability under harsh reforming conditions (GHSV = 7.2 × 104 mL h−1 gcat-1). This catalyst had a small crystalline size (8.5 nm) and a higher degree of NiO reduction, as confirmed by TPR and XRD analysis. In contrast, the Ni-SiO2 catalyst exhibited poor catalytic behavior due to lower reducibility and metal dispersion. Encapsulated carbon formation further reduced its catalytic performance. The combination of SiO2 and MgO in the Ni-based catalysts synergistically improved their catalytic performance. The results emphasize the importance of catalyst composition, including nickel content and SiO2 to MgO ratio, in determining the physicochemical properties and catalytic behavior during glycerol dry reforming. In conclusion, CO2 reforming of biodiesel-waste glycerol using xNi-ySiO2.MgO catalysts shows promise for sustainable syngas production. The findings contribute to the utilization of glycerol waste and offer opportunities for reducing environmental impact through efficient conversion into valuable syngas.</description><subject>administrative management</subject><subject>carbon</subject><subject>carbon dioxide</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>chemical composition</subject><subject>Dry reforming</subject><subject>encapsulation</subject><subject>energy conversion</subject><subject>environmental impact</subject><subject>Glycerol</subject><subject>Magnesium silicate</subject><subject>nanomaterials</subject><subject>Nickel</subject><subject>nickel oxide</subject><subject>surface area</subject><subject>Syngas</subject><subject>synthesis gas</subject><subject>wastes</subject><issn>0196-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM2O1DAQhHMAiWXhFZCPXBLaTsZOOIFG_Ky0MAfgbDntzqxHjj3YDmhehOcl0QBXpJb6UlVd_VXVCw4NBy5fnRoKGMNsQiNAdA3nveqGR9UN8EHW_QDdk-ppzicAaHcgb6pf-4NgiaaYZheOLE5sdNE6yuTrnyYXYkd_QUrRsxhYMCHmkhYsSyL22dVf3EE0n44HhqYYf8klszWK5Us4mszOKdpV62J4ze7C5Je1HG03ygP9czB8oNmh8QzjfI7Zbfpn1ePJ-EzP_-zb6tv7d1_3H-v7w4e7_dv7GgWoUg9WCDn20o7YKmrtDqGHfhsOgNPYTXaSUqEFDsYqa5XodpxwRKWEwa69rV5ec9eq3xfKRc8uI3lvAsUl65bvWqlAtsMqlVcpppjzikyfk5tNumgOeoOvT_ovfL3B11f4q_HN1UjrIz8cJZ3RbSSsS4RF2-j-F_EbN6KWrQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Pirzadi, Zahra</creator><creator>Meshkani, Fereshteh</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240901</creationdate><title>CO2 reforming of biodiesel-waste glycerol on nanostructure Ni-SiO2.MgO catalysts for syngas production: Influence of the catalyst chemical composition</title><author>Pirzadi, Zahra ; Meshkani, Fereshteh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-9d226b86dbc37e3d5c08088088100cfb4fdf667cd010ad7dd72451ecbc772ac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>administrative management</topic><topic>carbon</topic><topic>carbon dioxide</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>chemical composition</topic><topic>Dry reforming</topic><topic>encapsulation</topic><topic>energy conversion</topic><topic>environmental impact</topic><topic>Glycerol</topic><topic>Magnesium silicate</topic><topic>nanomaterials</topic><topic>Nickel</topic><topic>nickel oxide</topic><topic>surface area</topic><topic>Syngas</topic><topic>synthesis gas</topic><topic>wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pirzadi, Zahra</creatorcontrib><creatorcontrib>Meshkani, Fereshteh</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pirzadi, Zahra</au><au>Meshkani, Fereshteh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 reforming of biodiesel-waste glycerol on nanostructure Ni-SiO2.MgO catalysts for syngas production: Influence of the catalyst chemical composition</atitle><jtitle>Energy conversion and management</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>315</volume><spage>118749</spage><pages>118749-</pages><artnum>118749</artnum><issn>0196-8904</issn><abstract>[Display omitted] •xNi-ySiO2.MgO is made using a one-step method as a catalyst for syngas production.•Catalyst composition significantly influenced characteristics and reforming activity.•10Ni-SiO2.MgO catalyst possessed the highest glycerol conversion of 50% at 750 °C.•MgO addition influenced carbon deposition nature. This study investigated the potential of CO2 reforming of biodiesel-waste glycerol for synthesis gas (syngas) production using xNi-ySiO2.MgO catalysts. Catalysts were prepared with varying nickel loading and SiO2 to MgO ratios (0.5–2) using a one-step synthesis route. The catalysts exhibited a high BET surface area of 545 m2 g−1. The impact of catalyst composition, including nickel content and SiO2 to MgO ratio, on the physicochemical characteristics and catalytic behavior during glycerol CO2 reforming was examined. Catalytic performance evaluation revealed that the catalyst with a SiO2/MgO molar ratio of 1:1 and the highest nickel content (8.01 wt%) displayed the best activity (50 % glycerol conversion at 750 °C) and stability under harsh reforming conditions (GHSV = 7.2 × 104 mL h−1 gcat-1). This catalyst had a small crystalline size (8.5 nm) and a higher degree of NiO reduction, as confirmed by TPR and XRD analysis. In contrast, the Ni-SiO2 catalyst exhibited poor catalytic behavior due to lower reducibility and metal dispersion. Encapsulated carbon formation further reduced its catalytic performance. The combination of SiO2 and MgO in the Ni-based catalysts synergistically improved their catalytic performance. The results emphasize the importance of catalyst composition, including nickel content and SiO2 to MgO ratio, in determining the physicochemical properties and catalytic behavior during glycerol dry reforming. In conclusion, CO2 reforming of biodiesel-waste glycerol using xNi-ySiO2.MgO catalysts shows promise for sustainable syngas production. The findings contribute to the utilization of glycerol waste and offer opportunities for reducing environmental impact through efficient conversion into valuable syngas.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2024.118749</doi></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2024-09, Vol.315, p.118749, Article 118749
issn 0196-8904
language eng
recordid cdi_proquest_miscellaneous_3153670639
source Elsevier ScienceDirect Journals Complete
subjects administrative management
carbon
carbon dioxide
catalysts
catalytic activity
chemical composition
Dry reforming
encapsulation
energy conversion
environmental impact
Glycerol
Magnesium silicate
nanomaterials
Nickel
nickel oxide
surface area
Syngas
synthesis gas
wastes
title CO2 reforming of biodiesel-waste glycerol on nanostructure Ni-SiO2.MgO catalysts for syngas production: Influence of the catalyst chemical composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T14%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20reforming%20of%20biodiesel-waste%20glycerol%20on%20nanostructure%20Ni-SiO2.MgO%20catalysts%20for%20syngas%20production:%20Influence%20of%20the%20catalyst%20chemical%20composition&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Pirzadi,%20Zahra&rft.date=2024-09-01&rft.volume=315&rft.spage=118749&rft.pages=118749-&rft.artnum=118749&rft.issn=0196-8904&rft_id=info:doi/10.1016/j.enconman.2024.118749&rft_dat=%3Cproquest_cross%3E3153670639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153670639&rft_id=info:pmid/&rft_els_id=S0196890424006903&rfr_iscdi=true