Ensemble spatial modeling, considering habitat and biological traits, for predicting the potential distribution of Corythucha ciliata
Ensemble species distribution modeling offers a robust approach to reduce the inherent uncertainties associated with single models, and ultimately providing more accurate predictions of regions with a heightened probability of occurrence. As Corythucha ciliata (Say) damages deciduous trees in divers...
Gespeichert in:
Veröffentlicht in: | Entomological research 2024-07, Vol.54 (7), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Entomological research |
container_volume | 54 |
creator | Kim, Tae‐Hyeon Byeon, Dae‐hyeon Song, Jae‐Woo Lee, Wang‐Hee |
description | Ensemble species distribution modeling offers a robust approach to reduce the inherent uncertainties associated with single models, and ultimately providing more accurate predictions of regions with a heightened probability of occurrence. As Corythucha ciliata (Say) damages deciduous trees in diverse environments, including urban, suburban and forested regions, the objective of this study was to predict the potential distribution of C. ciliata by developing an ensemble model that comprehensively considered the biological and habitat traits of the pest using the CLIMEX and MaxEnt models. Although the ensemble model did not have significantly improved performance, compared with the single MaxEnt model, it was robust compared with distribution data. Our predictions suggest that C. ciliata will gradually expand its range from its current distribution in response to climate change, necessitating focused monitoring and pest‐control efforts in the predicted regions. This study not only evaluates pest distribution but also provides crucial insights into effective control strategies, which are adaptable to other pest management scenarios. |
doi_str_mv | 10.1111/1748-5967.12756 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153669566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084220866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2326-b540e93ee32522be03db9483d8a6e01dc719a3939f3a7df7e17eb1e1de3176cf3</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYsoOD7WbgNuXFgnj2nSLmUYHzAoiK5Dmtw6GTJNTVJkfoD_23ZGXLjxbu6D7xwunCy7IPiGDDUlYlbmRcXFDaGi4AfZ5PdyOM6szCmtxHF2EuMa44IwXk6yr0UbYVM7QLFTySqHNt6As-37NdK-jdZAGBa0UrVNKiHVGlRb7_y71QOcgrIpXqPGB9QFMFankU4rQJ1P0O4cjY0p2LpP1rfIN2juwzater1SSFtnVVJn2VGjXITzn36avd0tXucP-fL5_nF-u8w1ZZTndTHDUDEARgtKa8DM1NWsZKZUHDAxWpBKsYpVDVPCNAKIgJoAMcCI4Lphp9nV3rcL_qOHmOTGRg3OqRZ8HyUjBeO8Kjgf0Ms_6Nr3oR2-kwyXM0pxuaOme0oHH2OARnbBblTYSoLlGIscQ5BjCHIXy6Ao9opP62D7Hy4XTy973TdXD5F2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084220866</pqid></control><display><type>article</type><title>Ensemble spatial modeling, considering habitat and biological traits, for predicting the potential distribution of Corythucha ciliata</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Tae‐Hyeon ; Byeon, Dae‐hyeon ; Song, Jae‐Woo ; Lee, Wang‐Hee</creator><creatorcontrib>Kim, Tae‐Hyeon ; Byeon, Dae‐hyeon ; Song, Jae‐Woo ; Lee, Wang‐Hee</creatorcontrib><description>Ensemble species distribution modeling offers a robust approach to reduce the inherent uncertainties associated with single models, and ultimately providing more accurate predictions of regions with a heightened probability of occurrence. As Corythucha ciliata (Say) damages deciduous trees in diverse environments, including urban, suburban and forested regions, the objective of this study was to predict the potential distribution of C. ciliata by developing an ensemble model that comprehensively considered the biological and habitat traits of the pest using the CLIMEX and MaxEnt models. Although the ensemble model did not have significantly improved performance, compared with the single MaxEnt model, it was robust compared with distribution data. Our predictions suggest that C. ciliata will gradually expand its range from its current distribution in response to climate change, necessitating focused monitoring and pest‐control efforts in the predicted regions. This study not only evaluates pest distribution but also provides crucial insights into effective control strategies, which are adaptable to other pest management scenarios.</description><identifier>ISSN: 1738-2297</identifier><identifier>EISSN: 1748-5967</identifier><identifier>DOI: 10.1111/1748-5967.12756</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Climate change ; Climate prediction ; CLIMEX ; Corythucha ciliata ; Deciduous trees ; ensemble modeling ; Geographical distribution ; habitats ; MaxEnt ; Pest control ; pests ; probability ; spatial distribution ; sycamore lace bug</subject><ispartof>Entomological research, 2024-07, Vol.54 (7), p.n/a</ispartof><rights>2024 The Author(s). published by The Entomological Society of Korea and John Wiley & Sons Australia, Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2326-b540e93ee32522be03db9483d8a6e01dc719a3939f3a7df7e17eb1e1de3176cf3</cites><orcidid>0000-0002-8834-1779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1748-5967.12756$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1748-5967.12756$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Kim, Tae‐Hyeon</creatorcontrib><creatorcontrib>Byeon, Dae‐hyeon</creatorcontrib><creatorcontrib>Song, Jae‐Woo</creatorcontrib><creatorcontrib>Lee, Wang‐Hee</creatorcontrib><title>Ensemble spatial modeling, considering habitat and biological traits, for predicting the potential distribution of Corythucha ciliata</title><title>Entomological research</title><description>Ensemble species distribution modeling offers a robust approach to reduce the inherent uncertainties associated with single models, and ultimately providing more accurate predictions of regions with a heightened probability of occurrence. As Corythucha ciliata (Say) damages deciduous trees in diverse environments, including urban, suburban and forested regions, the objective of this study was to predict the potential distribution of C. ciliata by developing an ensemble model that comprehensively considered the biological and habitat traits of the pest using the CLIMEX and MaxEnt models. Although the ensemble model did not have significantly improved performance, compared with the single MaxEnt model, it was robust compared with distribution data. Our predictions suggest that C. ciliata will gradually expand its range from its current distribution in response to climate change, necessitating focused monitoring and pest‐control efforts in the predicted regions. This study not only evaluates pest distribution but also provides crucial insights into effective control strategies, which are adaptable to other pest management scenarios.</description><subject>Climate change</subject><subject>Climate prediction</subject><subject>CLIMEX</subject><subject>Corythucha ciliata</subject><subject>Deciduous trees</subject><subject>ensemble modeling</subject><subject>Geographical distribution</subject><subject>habitats</subject><subject>MaxEnt</subject><subject>Pest control</subject><subject>pests</subject><subject>probability</subject><subject>spatial distribution</subject><subject>sycamore lace bug</subject><issn>1738-2297</issn><issn>1748-5967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtLxDAUhYsoOD7WbgNuXFgnj2nSLmUYHzAoiK5Dmtw6GTJNTVJkfoD_23ZGXLjxbu6D7xwunCy7IPiGDDUlYlbmRcXFDaGi4AfZ5PdyOM6szCmtxHF2EuMa44IwXk6yr0UbYVM7QLFTySqHNt6As-37NdK-jdZAGBa0UrVNKiHVGlRb7_y71QOcgrIpXqPGB9QFMFankU4rQJ1P0O4cjY0p2LpP1rfIN2juwzater1SSFtnVVJn2VGjXITzn36avd0tXucP-fL5_nF-u8w1ZZTndTHDUDEARgtKa8DM1NWsZKZUHDAxWpBKsYpVDVPCNAKIgJoAMcCI4Lphp9nV3rcL_qOHmOTGRg3OqRZ8HyUjBeO8Kjgf0Ms_6Nr3oR2-kwyXM0pxuaOme0oHH2OARnbBblTYSoLlGIscQ5BjCHIXy6Ao9opP62D7Hy4XTy973TdXD5F2</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Kim, Tae‐Hyeon</creator><creator>Byeon, Dae‐hyeon</creator><creator>Song, Jae‐Woo</creator><creator>Lee, Wang‐Hee</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8834-1779</orcidid></search><sort><creationdate>202407</creationdate><title>Ensemble spatial modeling, considering habitat and biological traits, for predicting the potential distribution of Corythucha ciliata</title><author>Kim, Tae‐Hyeon ; Byeon, Dae‐hyeon ; Song, Jae‐Woo ; Lee, Wang‐Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2326-b540e93ee32522be03db9483d8a6e01dc719a3939f3a7df7e17eb1e1de3176cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Climate change</topic><topic>Climate prediction</topic><topic>CLIMEX</topic><topic>Corythucha ciliata</topic><topic>Deciduous trees</topic><topic>ensemble modeling</topic><topic>Geographical distribution</topic><topic>habitats</topic><topic>MaxEnt</topic><topic>Pest control</topic><topic>pests</topic><topic>probability</topic><topic>spatial distribution</topic><topic>sycamore lace bug</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae‐Hyeon</creatorcontrib><creatorcontrib>Byeon, Dae‐hyeon</creatorcontrib><creatorcontrib>Song, Jae‐Woo</creatorcontrib><creatorcontrib>Lee, Wang‐Hee</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Entomological research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae‐Hyeon</au><au>Byeon, Dae‐hyeon</au><au>Song, Jae‐Woo</au><au>Lee, Wang‐Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble spatial modeling, considering habitat and biological traits, for predicting the potential distribution of Corythucha ciliata</atitle><jtitle>Entomological research</jtitle><date>2024-07</date><risdate>2024</risdate><volume>54</volume><issue>7</issue><epage>n/a</epage><issn>1738-2297</issn><eissn>1748-5967</eissn><abstract>Ensemble species distribution modeling offers a robust approach to reduce the inherent uncertainties associated with single models, and ultimately providing more accurate predictions of regions with a heightened probability of occurrence. As Corythucha ciliata (Say) damages deciduous trees in diverse environments, including urban, suburban and forested regions, the objective of this study was to predict the potential distribution of C. ciliata by developing an ensemble model that comprehensively considered the biological and habitat traits of the pest using the CLIMEX and MaxEnt models. Although the ensemble model did not have significantly improved performance, compared with the single MaxEnt model, it was robust compared with distribution data. Our predictions suggest that C. ciliata will gradually expand its range from its current distribution in response to climate change, necessitating focused monitoring and pest‐control efforts in the predicted regions. This study not only evaluates pest distribution but also provides crucial insights into effective control strategies, which are adaptable to other pest management scenarios.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1748-5967.12756</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8834-1779</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-2297 |
ispartof | Entomological research, 2024-07, Vol.54 (7), p.n/a |
issn | 1738-2297 1748-5967 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153669566 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Climate change Climate prediction CLIMEX Corythucha ciliata Deciduous trees ensemble modeling Geographical distribution habitats MaxEnt Pest control pests probability spatial distribution sycamore lace bug |
title | Ensemble spatial modeling, considering habitat and biological traits, for predicting the potential distribution of Corythucha ciliata |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20spatial%20modeling,%20considering%20habitat%20and%20biological%20traits,%20for%20predicting%20the%20potential%20distribution%20of%20Corythucha%20ciliata&rft.jtitle=Entomological%20research&rft.au=Kim,%20Tae%E2%80%90Hyeon&rft.date=2024-07&rft.volume=54&rft.issue=7&rft.epage=n/a&rft.issn=1738-2297&rft.eissn=1748-5967&rft_id=info:doi/10.1111/1748-5967.12756&rft_dat=%3Cproquest_cross%3E3084220866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084220866&rft_id=info:pmid/&rfr_iscdi=true |