Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage
Metal–organic frameworks (MOFs) are one of the most promising hydrogen-storing materials due to their rich specific surface area, adjustable topological and pore structures, and modified functional groups. In this work, we developed automatically parallel computational workflows for high-throughput...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-07, Vol.16 (28), p.36444-36452 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36452 |
---|---|
container_issue | 28 |
container_start_page | 36444 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Wang, Linmeng Feng, Shihao Zhang, Chenjun Zhang, Xi Liu, Xiaodan Gao, Hongyi Liu, Zhiyuan Li, Rushuo Wang, Jingjing Jin, Xu |
description | Metal–organic frameworks (MOFs) are one of the most promising hydrogen-storing materials due to their rich specific surface area, adjustable topological and pore structures, and modified functional groups. In this work, we developed automatically parallel computational workflows for high-throughput screening of ∼11,600 MOFs from the CoRE database and discovered 69 top-performing MOF candidates with work capacity greater than 1.00 wt % at 298.5 K and a pressure swing between 100 and 0.1 bar, which is at least twice that of MOF-5. In particular, ZITRUP, OQFAJ01, WANHOL, and VATYIZ showed excellent hydrogen storage performance of 4.48, 3.16, 2.19, and 2.16 wt %. We specifically analyzed the relationship between pore-limiting diameter, largest cavity diameter, void fraction, open metal sites, metal elements or nonmetallic atomic elements, and deliverable capacity and found that not only geometrical and physical features of crystalline but also chemical properties of adsorbate sites determined the H2 storage capacity of MOFs at room temperature. It is highlighted that we first proposed the modified crystal graph convolutional neural networks by incorporating the obtained geometrical and physical features into the convolutional high-dimensional feature vectors of period crystal structures for predicting H2 storage performance, which can improve the prediction accuracy of the neural network from the former mean absolute error (MAE) of 0.064 wt % to the current MAE of 0.047 wt % and shorten the consuming time to about 10–4 times of high-throughput computational screening. This work opens a new avenue toward high-throughput screening of MOFs for H2 adsorption capacity, which can be extended for the screening and discovery of other functional materials. |
doi_str_mv | 10.1021/acsami.4c06416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153668578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153668578</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-6f2d3a58a81280bb33ed7217560aee552af30f0fa75d9c2b8becfd2f68862ea23</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEoqVw5Yh8REhZ_Cd2vMdq1WUrFfXQIo7RxBlnXZJ4sR2teuM70E_YT4KrXXpDnGY0-r030ntF8Z7RBaOcfQYTYXSLylBVMfWiOGXLqio1l_zl815VJ8WbGO8oVYJT-bo4EXqZ16U-LR7OQ3LWGQcDuZwSDoPrcTJIYOrIxvXb8nYb_Nxvd3MiKz_mAcn5KePfffhhB7-P5GLc-T0GN_UkbZGsISZyYwLi9HTylnzFBMPjr9_XoYfJGbIOMOI-6yOxPpDNfRd8fktukg_Q49vilYUh4rvjPCu-rS9uV5vy6vrL5er8qgRe6VQqyzsBUoNmXNO2FQK7mrNaKgqIUnKwglpqoZbd0vBWt2hsx63SWnEELs6KjwffXfA_Z4ypGV00OQOY0M-xEUwKpbSs9f9RWsuaCq1ZRhcH1AQfY0Db7IIbIdw3jDZPpTWH0ppjaVnw4eg9tyN2z_jfljLw6QBkYXPn55Djj_9y-wNo5qXZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075703881</pqid></control><display><type>article</type><title>Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage</title><source>ACS Publications</source><creator>Wang, Linmeng ; Feng, Shihao ; Zhang, Chenjun ; Zhang, Xi ; Liu, Xiaodan ; Gao, Hongyi ; Liu, Zhiyuan ; Li, Rushuo ; Wang, Jingjing ; Jin, Xu</creator><creatorcontrib>Wang, Linmeng ; Feng, Shihao ; Zhang, Chenjun ; Zhang, Xi ; Liu, Xiaodan ; Gao, Hongyi ; Liu, Zhiyuan ; Li, Rushuo ; Wang, Jingjing ; Jin, Xu</creatorcontrib><description>Metal–organic frameworks (MOFs) are one of the most promising hydrogen-storing materials due to their rich specific surface area, adjustable topological and pore structures, and modified functional groups. In this work, we developed automatically parallel computational workflows for high-throughput screening of ∼11,600 MOFs from the CoRE database and discovered 69 top-performing MOF candidates with work capacity greater than 1.00 wt % at 298.5 K and a pressure swing between 100 and 0.1 bar, which is at least twice that of MOF-5. In particular, ZITRUP, OQFAJ01, WANHOL, and VATYIZ showed excellent hydrogen storage performance of 4.48, 3.16, 2.19, and 2.16 wt %. We specifically analyzed the relationship between pore-limiting diameter, largest cavity diameter, void fraction, open metal sites, metal elements or nonmetallic atomic elements, and deliverable capacity and found that not only geometrical and physical features of crystalline but also chemical properties of adsorbate sites determined the H2 storage capacity of MOFs at room temperature. It is highlighted that we first proposed the modified crystal graph convolutional neural networks by incorporating the obtained geometrical and physical features into the convolutional high-dimensional feature vectors of period crystal structures for predicting H2 storage performance, which can improve the prediction accuracy of the neural network from the former mean absolute error (MAE) of 0.064 wt % to the current MAE of 0.047 wt % and shorten the consuming time to about 10–4 times of high-throughput computational screening. This work opens a new avenue toward high-throughput screening of MOFs for H2 adsorption capacity, which can be extended for the screening and discovery of other functional materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c06416</identifier><identifier>PMID: 38963298</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adsorption ; ambient temperature ; artificial intelligence ; Energy, Environmental, and Catalysis Applications ; hydrogen ; prediction ; surface area ; topology</subject><ispartof>ACS applied materials & interfaces, 2024-07, Vol.16 (28), p.36444-36452</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-6f2d3a58a81280bb33ed7217560aee552af30f0fa75d9c2b8becfd2f68862ea23</cites><orcidid>0000-0001-9312-5504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c06416$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c06416$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38963298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Linmeng</creatorcontrib><creatorcontrib>Feng, Shihao</creatorcontrib><creatorcontrib>Zhang, Chenjun</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Liu, Xiaodan</creatorcontrib><creatorcontrib>Gao, Hongyi</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Li, Rushuo</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Jin, Xu</creatorcontrib><title>Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Metal–organic frameworks (MOFs) are one of the most promising hydrogen-storing materials due to their rich specific surface area, adjustable topological and pore structures, and modified functional groups. In this work, we developed automatically parallel computational workflows for high-throughput screening of ∼11,600 MOFs from the CoRE database and discovered 69 top-performing MOF candidates with work capacity greater than 1.00 wt % at 298.5 K and a pressure swing between 100 and 0.1 bar, which is at least twice that of MOF-5. In particular, ZITRUP, OQFAJ01, WANHOL, and VATYIZ showed excellent hydrogen storage performance of 4.48, 3.16, 2.19, and 2.16 wt %. We specifically analyzed the relationship between pore-limiting diameter, largest cavity diameter, void fraction, open metal sites, metal elements or nonmetallic atomic elements, and deliverable capacity and found that not only geometrical and physical features of crystalline but also chemical properties of adsorbate sites determined the H2 storage capacity of MOFs at room temperature. It is highlighted that we first proposed the modified crystal graph convolutional neural networks by incorporating the obtained geometrical and physical features into the convolutional high-dimensional feature vectors of period crystal structures for predicting H2 storage performance, which can improve the prediction accuracy of the neural network from the former mean absolute error (MAE) of 0.064 wt % to the current MAE of 0.047 wt % and shorten the consuming time to about 10–4 times of high-throughput computational screening. This work opens a new avenue toward high-throughput screening of MOFs for H2 adsorption capacity, which can be extended for the screening and discovery of other functional materials.</description><subject>adsorption</subject><subject>ambient temperature</subject><subject>artificial intelligence</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>hydrogen</subject><subject>prediction</subject><subject>surface area</subject><subject>topology</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxSMEoqVw5Yh8REhZ_Cd2vMdq1WUrFfXQIo7RxBlnXZJ4sR2teuM70E_YT4KrXXpDnGY0-r030ntF8Z7RBaOcfQYTYXSLylBVMfWiOGXLqio1l_zl815VJ8WbGO8oVYJT-bo4EXqZ16U-LR7OQ3LWGQcDuZwSDoPrcTJIYOrIxvXb8nYb_Nxvd3MiKz_mAcn5KePfffhhB7-P5GLc-T0GN_UkbZGsISZyYwLi9HTylnzFBMPjr9_XoYfJGbIOMOI-6yOxPpDNfRd8fktukg_Q49vilYUh4rvjPCu-rS9uV5vy6vrL5er8qgRe6VQqyzsBUoNmXNO2FQK7mrNaKgqIUnKwglpqoZbd0vBWt2hsx63SWnEELs6KjwffXfA_Z4ypGV00OQOY0M-xEUwKpbSs9f9RWsuaCq1ZRhcH1AQfY0Db7IIbIdw3jDZPpTWH0ppjaVnw4eg9tyN2z_jfljLw6QBkYXPn55Djj_9y-wNo5qXZ</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Wang, Linmeng</creator><creator>Feng, Shihao</creator><creator>Zhang, Chenjun</creator><creator>Zhang, Xi</creator><creator>Liu, Xiaodan</creator><creator>Gao, Hongyi</creator><creator>Liu, Zhiyuan</creator><creator>Li, Rushuo</creator><creator>Wang, Jingjing</creator><creator>Jin, Xu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9312-5504</orcidid></search><sort><creationdate>20240717</creationdate><title>Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage</title><author>Wang, Linmeng ; Feng, Shihao ; Zhang, Chenjun ; Zhang, Xi ; Liu, Xiaodan ; Gao, Hongyi ; Liu, Zhiyuan ; Li, Rushuo ; Wang, Jingjing ; Jin, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-6f2d3a58a81280bb33ed7217560aee552af30f0fa75d9c2b8becfd2f68862ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adsorption</topic><topic>ambient temperature</topic><topic>artificial intelligence</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>hydrogen</topic><topic>prediction</topic><topic>surface area</topic><topic>topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Linmeng</creatorcontrib><creatorcontrib>Feng, Shihao</creatorcontrib><creatorcontrib>Zhang, Chenjun</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Liu, Xiaodan</creatorcontrib><creatorcontrib>Gao, Hongyi</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Li, Rushuo</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Jin, Xu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Linmeng</au><au>Feng, Shihao</au><au>Zhang, Chenjun</au><au>Zhang, Xi</au><au>Liu, Xiaodan</au><au>Gao, Hongyi</au><au>Liu, Zhiyuan</au><au>Li, Rushuo</au><au>Wang, Jingjing</au><au>Jin, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-17</date><risdate>2024</risdate><volume>16</volume><issue>28</issue><spage>36444</spage><epage>36452</epage><pages>36444-36452</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Metal–organic frameworks (MOFs) are one of the most promising hydrogen-storing materials due to their rich specific surface area, adjustable topological and pore structures, and modified functional groups. In this work, we developed automatically parallel computational workflows for high-throughput screening of ∼11,600 MOFs from the CoRE database and discovered 69 top-performing MOF candidates with work capacity greater than 1.00 wt % at 298.5 K and a pressure swing between 100 and 0.1 bar, which is at least twice that of MOF-5. In particular, ZITRUP, OQFAJ01, WANHOL, and VATYIZ showed excellent hydrogen storage performance of 4.48, 3.16, 2.19, and 2.16 wt %. We specifically analyzed the relationship between pore-limiting diameter, largest cavity diameter, void fraction, open metal sites, metal elements or nonmetallic atomic elements, and deliverable capacity and found that not only geometrical and physical features of crystalline but also chemical properties of adsorbate sites determined the H2 storage capacity of MOFs at room temperature. It is highlighted that we first proposed the modified crystal graph convolutional neural networks by incorporating the obtained geometrical and physical features into the convolutional high-dimensional feature vectors of period crystal structures for predicting H2 storage performance, which can improve the prediction accuracy of the neural network from the former mean absolute error (MAE) of 0.064 wt % to the current MAE of 0.047 wt % and shorten the consuming time to about 10–4 times of high-throughput computational screening. This work opens a new avenue toward high-throughput screening of MOFs for H2 adsorption capacity, which can be extended for the screening and discovery of other functional materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38963298</pmid><doi>10.1021/acsami.4c06416</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9312-5504</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-07, Vol.16 (28), p.36444-36452 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153668578 |
source | ACS Publications |
subjects | adsorption ambient temperature artificial intelligence Energy, Environmental, and Catalysis Applications hydrogen prediction surface area topology |
title | Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20and%20High-Throughput%20Computational%20Workflows%20Empowering%20the%20Fast%20Screening%20of%20Metal%E2%80%93Organic%20Frameworks%20for%20Hydrogen%20Storage&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Linmeng&rft.date=2024-07-17&rft.volume=16&rft.issue=28&rft.spage=36444&rft.epage=36452&rft.pages=36444-36452&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c06416&rft_dat=%3Cproquest_cross%3E3153668578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075703881&rft_id=info:pmid/38963298&rfr_iscdi=true |