Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage

Metal–organic frameworks (MOFs) are one of the most promising hydrogen-storing materials due to their rich specific surface area, adjustable topological and pore structures, and modified functional groups. In this work, we developed automatically parallel computational workflows for high-throughput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-07, Vol.16 (28), p.36444-36452
Hauptverfasser: Wang, Linmeng, Feng, Shihao, Zhang, Chenjun, Zhang, Xi, Liu, Xiaodan, Gao, Hongyi, Liu, Zhiyuan, Li, Rushuo, Wang, Jingjing, Jin, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36452
container_issue 28
container_start_page 36444
container_title ACS applied materials & interfaces
container_volume 16
creator Wang, Linmeng
Feng, Shihao
Zhang, Chenjun
Zhang, Xi
Liu, Xiaodan
Gao, Hongyi
Liu, Zhiyuan
Li, Rushuo
Wang, Jingjing
Jin, Xu
description Metal–organic frameworks (MOFs) are one of the most promising hydrogen-storing materials due to their rich specific surface area, adjustable topological and pore structures, and modified functional groups. In this work, we developed automatically parallel computational workflows for high-throughput screening of ∼11,600 MOFs from the CoRE database and discovered 69 top-performing MOF candidates with work capacity greater than 1.00 wt % at 298.5 K and a pressure swing between 100 and 0.1 bar, which is at least twice that of MOF-5. In particular, ZITRUP, OQFAJ01, WANHOL, and VATYIZ showed excellent hydrogen storage performance of 4.48, 3.16, 2.19, and 2.16 wt %. We specifically analyzed the relationship between pore-limiting diameter, largest cavity diameter, void fraction, open metal sites, metal elements or nonmetallic atomic elements, and deliverable capacity and found that not only geometrical and physical features of crystalline but also chemical properties of adsorbate sites determined the H2 storage capacity of MOFs at room temperature. It is highlighted that we first proposed the modified crystal graph convolutional neural networks by incorporating the obtained geometrical and physical features into the convolutional high-dimensional feature vectors of period crystal structures for predicting H2 storage performance, which can improve the prediction accuracy of the neural network from the former mean absolute error (MAE) of 0.064 wt % to the current MAE of 0.047 wt % and shorten the consuming time to about 10–4 times of high-throughput computational screening. This work opens a new avenue toward high-throughput screening of MOFs for H2 adsorption capacity, which can be extended for the screening and discovery of other functional materials.
doi_str_mv 10.1021/acsami.4c06416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153668578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153668578</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-6f2d3a58a81280bb33ed7217560aee552af30f0fa75d9c2b8becfd2f68862ea23</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEoqVw5Yh8REhZ_Cd2vMdq1WUrFfXQIo7RxBlnXZJ4sR2teuM70E_YT4KrXXpDnGY0-r030ntF8Z7RBaOcfQYTYXSLylBVMfWiOGXLqio1l_zl815VJ8WbGO8oVYJT-bo4EXqZ16U-LR7OQ3LWGQcDuZwSDoPrcTJIYOrIxvXb8nYb_Nxvd3MiKz_mAcn5KePfffhhB7-P5GLc-T0GN_UkbZGsISZyYwLi9HTylnzFBMPjr9_XoYfJGbIOMOI-6yOxPpDNfRd8fktukg_Q49vilYUh4rvjPCu-rS9uV5vy6vrL5er8qgRe6VQqyzsBUoNmXNO2FQK7mrNaKgqIUnKwglpqoZbd0vBWt2hsx63SWnEELs6KjwffXfA_Z4ypGV00OQOY0M-xEUwKpbSs9f9RWsuaCq1ZRhcH1AQfY0Db7IIbIdw3jDZPpTWH0ppjaVnw4eg9tyN2z_jfljLw6QBkYXPn55Djj_9y-wNo5qXZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075703881</pqid></control><display><type>article</type><title>Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage</title><source>ACS Publications</source><creator>Wang, Linmeng ; Feng, Shihao ; Zhang, Chenjun ; Zhang, Xi ; Liu, Xiaodan ; Gao, Hongyi ; Liu, Zhiyuan ; Li, Rushuo ; Wang, Jingjing ; Jin, Xu</creator><creatorcontrib>Wang, Linmeng ; Feng, Shihao ; Zhang, Chenjun ; Zhang, Xi ; Liu, Xiaodan ; Gao, Hongyi ; Liu, Zhiyuan ; Li, Rushuo ; Wang, Jingjing ; Jin, Xu</creatorcontrib><description>Metal–organic frameworks (MOFs) are one of the most promising hydrogen-storing materials due to their rich specific surface area, adjustable topological and pore structures, and modified functional groups. In this work, we developed automatically parallel computational workflows for high-throughput screening of ∼11,600 MOFs from the CoRE database and discovered 69 top-performing MOF candidates with work capacity greater than 1.00 wt % at 298.5 K and a pressure swing between 100 and 0.1 bar, which is at least twice that of MOF-5. In particular, ZITRUP, OQFAJ01, WANHOL, and VATYIZ showed excellent hydrogen storage performance of 4.48, 3.16, 2.19, and 2.16 wt %. We specifically analyzed the relationship between pore-limiting diameter, largest cavity diameter, void fraction, open metal sites, metal elements or nonmetallic atomic elements, and deliverable capacity and found that not only geometrical and physical features of crystalline but also chemical properties of adsorbate sites determined the H2 storage capacity of MOFs at room temperature. It is highlighted that we first proposed the modified crystal graph convolutional neural networks by incorporating the obtained geometrical and physical features into the convolutional high-dimensional feature vectors of period crystal structures for predicting H2 storage performance, which can improve the prediction accuracy of the neural network from the former mean absolute error (MAE) of 0.064 wt % to the current MAE of 0.047 wt % and shorten the consuming time to about 10–4 times of high-throughput computational screening. This work opens a new avenue toward high-throughput screening of MOFs for H2 adsorption capacity, which can be extended for the screening and discovery of other functional materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c06416</identifier><identifier>PMID: 38963298</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adsorption ; ambient temperature ; artificial intelligence ; Energy, Environmental, and Catalysis Applications ; hydrogen ; prediction ; surface area ; topology</subject><ispartof>ACS applied materials &amp; interfaces, 2024-07, Vol.16 (28), p.36444-36452</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-6f2d3a58a81280bb33ed7217560aee552af30f0fa75d9c2b8becfd2f68862ea23</cites><orcidid>0000-0001-9312-5504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c06416$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c06416$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38963298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Linmeng</creatorcontrib><creatorcontrib>Feng, Shihao</creatorcontrib><creatorcontrib>Zhang, Chenjun</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Liu, Xiaodan</creatorcontrib><creatorcontrib>Gao, Hongyi</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Li, Rushuo</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Jin, Xu</creatorcontrib><title>Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Metal–organic frameworks (MOFs) are one of the most promising hydrogen-storing materials due to their rich specific surface area, adjustable topological and pore structures, and modified functional groups. In this work, we developed automatically parallel computational workflows for high-throughput screening of ∼11,600 MOFs from the CoRE database and discovered 69 top-performing MOF candidates with work capacity greater than 1.00 wt % at 298.5 K and a pressure swing between 100 and 0.1 bar, which is at least twice that of MOF-5. In particular, ZITRUP, OQFAJ01, WANHOL, and VATYIZ showed excellent hydrogen storage performance of 4.48, 3.16, 2.19, and 2.16 wt %. We specifically analyzed the relationship between pore-limiting diameter, largest cavity diameter, void fraction, open metal sites, metal elements or nonmetallic atomic elements, and deliverable capacity and found that not only geometrical and physical features of crystalline but also chemical properties of adsorbate sites determined the H2 storage capacity of MOFs at room temperature. It is highlighted that we first proposed the modified crystal graph convolutional neural networks by incorporating the obtained geometrical and physical features into the convolutional high-dimensional feature vectors of period crystal structures for predicting H2 storage performance, which can improve the prediction accuracy of the neural network from the former mean absolute error (MAE) of 0.064 wt % to the current MAE of 0.047 wt % and shorten the consuming time to about 10–4 times of high-throughput computational screening. This work opens a new avenue toward high-throughput screening of MOFs for H2 adsorption capacity, which can be extended for the screening and discovery of other functional materials.</description><subject>adsorption</subject><subject>ambient temperature</subject><subject>artificial intelligence</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>hydrogen</subject><subject>prediction</subject><subject>surface area</subject><subject>topology</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxSMEoqVw5Yh8REhZ_Cd2vMdq1WUrFfXQIo7RxBlnXZJ4sR2teuM70E_YT4KrXXpDnGY0-r030ntF8Z7RBaOcfQYTYXSLylBVMfWiOGXLqio1l_zl815VJ8WbGO8oVYJT-bo4EXqZ16U-LR7OQ3LWGQcDuZwSDoPrcTJIYOrIxvXb8nYb_Nxvd3MiKz_mAcn5KePfffhhB7-P5GLc-T0GN_UkbZGsISZyYwLi9HTylnzFBMPjr9_XoYfJGbIOMOI-6yOxPpDNfRd8fktukg_Q49vilYUh4rvjPCu-rS9uV5vy6vrL5er8qgRe6VQqyzsBUoNmXNO2FQK7mrNaKgqIUnKwglpqoZbd0vBWt2hsx63SWnEELs6KjwffXfA_Z4ypGV00OQOY0M-xEUwKpbSs9f9RWsuaCq1ZRhcH1AQfY0Db7IIbIdw3jDZPpTWH0ppjaVnw4eg9tyN2z_jfljLw6QBkYXPn55Djj_9y-wNo5qXZ</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Wang, Linmeng</creator><creator>Feng, Shihao</creator><creator>Zhang, Chenjun</creator><creator>Zhang, Xi</creator><creator>Liu, Xiaodan</creator><creator>Gao, Hongyi</creator><creator>Liu, Zhiyuan</creator><creator>Li, Rushuo</creator><creator>Wang, Jingjing</creator><creator>Jin, Xu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9312-5504</orcidid></search><sort><creationdate>20240717</creationdate><title>Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage</title><author>Wang, Linmeng ; Feng, Shihao ; Zhang, Chenjun ; Zhang, Xi ; Liu, Xiaodan ; Gao, Hongyi ; Liu, Zhiyuan ; Li, Rushuo ; Wang, Jingjing ; Jin, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-6f2d3a58a81280bb33ed7217560aee552af30f0fa75d9c2b8becfd2f68862ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adsorption</topic><topic>ambient temperature</topic><topic>artificial intelligence</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>hydrogen</topic><topic>prediction</topic><topic>surface area</topic><topic>topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Linmeng</creatorcontrib><creatorcontrib>Feng, Shihao</creatorcontrib><creatorcontrib>Zhang, Chenjun</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Liu, Xiaodan</creatorcontrib><creatorcontrib>Gao, Hongyi</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Li, Rushuo</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><creatorcontrib>Jin, Xu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Linmeng</au><au>Feng, Shihao</au><au>Zhang, Chenjun</au><au>Zhang, Xi</au><au>Liu, Xiaodan</au><au>Gao, Hongyi</au><au>Liu, Zhiyuan</au><au>Li, Rushuo</au><au>Wang, Jingjing</au><au>Jin, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-17</date><risdate>2024</risdate><volume>16</volume><issue>28</issue><spage>36444</spage><epage>36452</epage><pages>36444-36452</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Metal–organic frameworks (MOFs) are one of the most promising hydrogen-storing materials due to their rich specific surface area, adjustable topological and pore structures, and modified functional groups. In this work, we developed automatically parallel computational workflows for high-throughput screening of ∼11,600 MOFs from the CoRE database and discovered 69 top-performing MOF candidates with work capacity greater than 1.00 wt % at 298.5 K and a pressure swing between 100 and 0.1 bar, which is at least twice that of MOF-5. In particular, ZITRUP, OQFAJ01, WANHOL, and VATYIZ showed excellent hydrogen storage performance of 4.48, 3.16, 2.19, and 2.16 wt %. We specifically analyzed the relationship between pore-limiting diameter, largest cavity diameter, void fraction, open metal sites, metal elements or nonmetallic atomic elements, and deliverable capacity and found that not only geometrical and physical features of crystalline but also chemical properties of adsorbate sites determined the H2 storage capacity of MOFs at room temperature. It is highlighted that we first proposed the modified crystal graph convolutional neural networks by incorporating the obtained geometrical and physical features into the convolutional high-dimensional feature vectors of period crystal structures for predicting H2 storage performance, which can improve the prediction accuracy of the neural network from the former mean absolute error (MAE) of 0.064 wt % to the current MAE of 0.047 wt % and shorten the consuming time to about 10–4 times of high-throughput computational screening. This work opens a new avenue toward high-throughput screening of MOFs for H2 adsorption capacity, which can be extended for the screening and discovery of other functional materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38963298</pmid><doi>10.1021/acsami.4c06416</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9312-5504</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-07, Vol.16 (28), p.36444-36452
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3153668578
source ACS Publications
subjects adsorption
ambient temperature
artificial intelligence
Energy, Environmental, and Catalysis Applications
hydrogen
prediction
surface area
topology
title Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal–Organic Frameworks for Hydrogen Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20and%20High-Throughput%20Computational%20Workflows%20Empowering%20the%20Fast%20Screening%20of%20Metal%E2%80%93Organic%20Frameworks%20for%20Hydrogen%20Storage&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Linmeng&rft.date=2024-07-17&rft.volume=16&rft.issue=28&rft.spage=36444&rft.epage=36452&rft.pages=36444-36452&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c06416&rft_dat=%3Cproquest_cross%3E3153668578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075703881&rft_id=info:pmid/38963298&rfr_iscdi=true