Patterns of recovery in extant and extirpated seabirds after the world's largest multipredator eradication
Eradicating invasive predators from islands can result in substantial recovery of seabirds, but the mechanisms that drive population changes remain poorly understood. Meta‐analyses have recently revealed that immigration is surprisingly important to the recovery of philopatric seabirds, but it is no...
Gespeichert in:
Veröffentlicht in: | Conservation biology 2024-08, Vol.38 (4), p.e14239-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e14239 |
container_title | Conservation biology |
container_volume | 38 |
creator | Bird, Jeremy P. Fuller, Richard A. Shaw, Justine D. |
description | Eradicating invasive predators from islands can result in substantial recovery of seabirds, but the mechanisms that drive population changes remain poorly understood. Meta‐analyses have recently revealed that immigration is surprisingly important to the recovery of philopatric seabirds, but it is not known whether dispersal and philopatry interact predictably to determine rates of population growth and changes of distribution. We used whole‐island surveys and long‐term monitoring plots to study the abundance, distribution, and trends of 4 burrowing seabird species on Macquarie Island, Australia, to examine the legacy impacts of invasive species and ongoing responses to the world's largest eradication of multiple species of vertebrates. Wekas (Gallirallus australis) were eradicated in 1988; cats (Felis catus) in 2001; and rabbits (Oryctolagus cuniculus), black rats (Rattus rattus), and mice (Mus mus) in 2011–2014. We compared surveys from 1976–1979 and 2017–2018 and monitoring from the 1990s and 2000s onward. Antarctic prions (Pachyptila desolata) and white‐headed petrels (Pterodroma lessonii) increased ∼1% per year. Blue petrels (Halobaena caerulea) and gray petrels (Procellaria cinerea) recolonized following extirpation from the main island in the 1900s but remained spatially and numerically rare in 2018. However, they increased rapidly at 14% and 10% per year, respectively, since cat eradication in 2001. Blue and gray petrel recolonization occurred on steep, dry, west‐facing slopes close to ridgelines at low elevation (i.e., high‐quality petrel habitat). They overlapped |
doi_str_mv | 10.1111/cobi.14239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153667177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153667177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3859-2df0c7e03dfc835b38493ed8dc38a4c0447f4a8c96f019d8cababb211bb71b793</originalsourceid><addsrcrecordid>eNqF0U9vFCEYBnDS2Ni1eukHMCQeappMhWEY4Fg3Wps0qQc9E_68o2xmhxUY2_32Zd22Bw8tF0j48QR4EDqh5JzW8clFG85p1zJ1gBaUt6yhgqlXaEGklI2Uqj1Cb3JeEUIUp91rdMQkE7wn7QKtvptSIE0ZxwEncPEvpC0OE4a7YqaCzeR3y5A2poDHGYwNyWdshnoKl9-Ab2Ma_WnGo0m_IBe8nscSNgm8KTFhSMYHZ0qI01t0OJgxw7uH-Rj9_Prlx_Jbc31zebW8uG4ck1w1rR-IE0CYH5xk3DLZKQZe-rptOke6TgydkU71A6HKS2essbal1FpBrVDsGH3c525S_DPXK-l1yA7G0UwQ56wZ5azvBRXiRdqqVkrO6g9W-uE_uopzmupDNCOS9R0njFd1tlcuxZwTDHqTwtqkraZE78rSu7L0v7Iqfv8QOds1-Cf62E4FdA9uwwjbZ6L08ubz1T70HueWoBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083645035</pqid></control><display><type>article</type><title>Patterns of recovery in extant and extirpated seabirds after the world's largest multipredator eradication</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bird, Jeremy P. ; Fuller, Richard A. ; Shaw, Justine D.</creator><creatorcontrib>Bird, Jeremy P. ; Fuller, Richard A. ; Shaw, Justine D.</creatorcontrib><description>Eradicating invasive predators from islands can result in substantial recovery of seabirds, but the mechanisms that drive population changes remain poorly understood. Meta‐analyses have recently revealed that immigration is surprisingly important to the recovery of philopatric seabirds, but it is not known whether dispersal and philopatry interact predictably to determine rates of population growth and changes of distribution. We used whole‐island surveys and long‐term monitoring plots to study the abundance, distribution, and trends of 4 burrowing seabird species on Macquarie Island, Australia, to examine the legacy impacts of invasive species and ongoing responses to the world's largest eradication of multiple species of vertebrates. Wekas (Gallirallus australis) were eradicated in 1988; cats (Felis catus) in 2001; and rabbits (Oryctolagus cuniculus), black rats (Rattus rattus), and mice (Mus mus) in 2011–2014. We compared surveys from 1976–1979 and 2017–2018 and monitoring from the 1990s and 2000s onward. Antarctic prions (Pachyptila desolata) and white‐headed petrels (Pterodroma lessonii) increased ∼1% per year. Blue petrels (Halobaena caerulea) and gray petrels (Procellaria cinerea) recolonized following extirpation from the main island in the 1900s but remained spatially and numerically rare in 2018. However, they increased rapidly at 14% and 10% per year, respectively, since cat eradication in 2001. Blue and gray petrel recolonization occurred on steep, dry, west‐facing slopes close to ridgelines at low elevation (i.e., high‐quality petrel habitat). They overlapped <5% with the distribution of Antarctic prion and white‐headed petrels which occurred in suboptimal shallow, wet, east‐facing slopes at high elevation. We inferred that the speed of population growth of recolonizing species was related to their numerically smaller starting size compared with the established species and was driven by immigration and selection of ideal habitat.
Patrones de recuperación en aves marinas existentes y extirpadas después de la mayor erradicación mundial de multidepredadores
Resumen
La erradicación de depredadores invasores en las islas puede derivar en la recuperación sustancial de aves marinas, aunque entendemos muy poco los mecanismos que causan los cambios poblacionales. Los metaanálisis recientes han revelado que la inmigración es de gran importancia para la recuperación de aves marinas filopátricas, aunque no sabemos si la dispersión y la filopatría interactúan de forma predecible para poder determinar las tasas de crecimiento poblacional y los cambios en la distribución. Aplicamos censos de isla completa y parcelas de monitoreo a largo plazo para estudiar la abundancia, distribución y tendencias de cuatro especies de aves marinas cavadoras en la Isla Macquarie, Australia, para analizar los impactos heredados de las especies invasoras y la respuesta continua a la mayor erradicación mundial de varias especies de vertebrados. El rascón weka (Gallirallus australis) se erradicó en 1988; los gatos (Felis catus) en 2001; y los conejos (Oryctolagus cuniculus), ratas (Rattus rattus) y ratones (Mus mus) entre 2011 y 2014. Comparamos los censos de 1976–1979 y 2017–2018 y el monitoreo realizado en los 90s y del año 2000 en adelante. El pato petrel antártico (Pachyptila desolata) y el petrel cabeciblanco (Pterodroma lessonii) incrementaron ∼1% por año. El petrel azulado (Halobaena caerulea) y la pardela gris (Procellaria cinerea) recolonizaron la isla después de su extirpación en la década de 1900, pero todavía eran especies raras espacial y numéricamente en 2018. Sin embargo, esta especie incrementó rápidamente en un 14% y 10% por año respectivamente desde que se erradicaron los gatos en 2001. La recolonización ocurrió desde las laderas empinadas, secas y con orientación al oeste en los sistemas montañosos de baja elevación (es decir, hábitats de gran calidad para los petreles). La distribución del petrel azulado y la pardela gris ocurrió en laderas someras subóptimas y húmedas con orientación al este a altas elevaciones. Esta distribución se traslapó menos del 5% con la del pato petrel antártico y la del petrel cabeciblanco. Inferimos que la velocidad del crecimiento poblacional de las especies que recolonizaron estuvo relacionada con el menor tamaño inicial en comparación con las especies establecidas y fue causada por la inmigración y la selección del hábitat ideal.
【摘要】
消灭岛屿上的入侵捕食者可以帮助海鸟大幅恢复, 但目前对种群变化的驱动机制仍知之甚少。近期的一项荟萃分析表明, 鸟类个体迁入对归巢海鸟的恢复具有惊人的重要作用, 但人们还不知道扩散和归巢行为是否存在可预测的相互作用, 来决定种群增长率和分布范围变化。本研究利用全岛调查和位点长期监测研究了澳大利亚麦格理岛上四种穴居海鸟的丰度、分布和种群趋势, 以分析入侵物种的遗留影响以及这些海鸟对世界上最大规模的多种脊椎动物消灭行动的持续响应。该地区于 1988 年消灭了新西兰秧鸡 (Gallirallus australis); 2001 年消灭了猫 (Felis catus); 并在 2011–2014 年消灭了兔子 (Oryctolagus cuniculus) 、黑鼠 (Rattus rattus) 和小鼠 (Mus mus) 。我们比较了 1976–1979 年和 2017–2018 年的调查以及 20 世纪 90 年代和 21 世纪以来的监测。结果表明, 南极锯鹱 (Pachyptila desolata) 和白头海燕 (Pterodroma lessonii) 每年增长 ~1% 。蓝海燕 (Halobaena caerulea) 和灰海燕 (Procellaria cinerea) 于 20 世纪在主岛的消灭行动后重新定殖, 但直到 2018 年在空间和数量上仍然较为稀少。不过, 自 2001 年消灭掉猫以来, 它们分别以每年 14% 和 10% 的速度迅速增加。重新定殖区主要在靠近山脊线陡峭、干燥、朝西的低海拔斜坡上 (即海燕高质量栖息地) 。蓝海燕和灰海燕分布在次优的平缓、潮湿、朝东的较高海拔斜坡上, 与南极锯鹱和白头海燕分布区的重叠率小于 5% 。我们推断, 重新定殖物种的种群增长率与其相较于已建群物种较低的建群数量有关, 并受到迁入和适宜栖息地选择的驱动。【翻译: 胡怡思; 审校: 聂永刚】</description><identifier>ISSN: 0888-8892</identifier><identifier>ISSN: 1523-1739</identifier><identifier>EISSN: 1523-1739</identifier><identifier>DOI: 10.1111/cobi.14239</identifier><identifier>PMID: 38375602</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>altitude ; Animals ; Antarctic region ; Aquatic birds ; Australia ; Birds ; Cats ; colony formation ; Dispersal ; Eradication ; Felis catus ; filopatría ; formación de colonias ; Gallirallus ; Gallirallus australis ; Geographical distribution ; Habitats ; Halobaena caerulea ; Immigration ; inmigración ; Introduced species ; Introduced Species - statistics & numerical data ; Invasive species ; island restoration ; Islands ; Marinas ; meta-analysis ; Mice ; Monitoring ; Oryctolagus cuniculus ; Pachyptila ; Pachyptila desolata ; Philopatry ; Population changes ; Population Control - statistics & numerical data ; Population dynamics ; Population Growth ; Population studies ; Predators ; Predatory Behavior ; Prion protein ; Prions ; Procellaria cinerea ; Procellariiformes ; Pterodroma lessonii ; Rabbits ; Rats ; Rattus rattus ; Recolonization ; Recovery ; restauración de islas ; Seabirds ; species ; Surveys ; Vertebrates ; wildlife management ; 岛屿恢复 ; 归巢 ; 迁入 ; 鸟群 ; 鹱形目</subject><ispartof>Conservation biology, 2024-08, Vol.38 (4), p.e14239-n/a</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of Society for .</rights><rights>2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3859-2df0c7e03dfc835b38493ed8dc38a4c0447f4a8c96f019d8cababb211bb71b793</cites><orcidid>0000-0002-7466-1755 ; 0000-0001-9468-9678 ; 0000-0002-9603-2271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcobi.14239$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcobi.14239$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38375602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bird, Jeremy P.</creatorcontrib><creatorcontrib>Fuller, Richard A.</creatorcontrib><creatorcontrib>Shaw, Justine D.</creatorcontrib><title>Patterns of recovery in extant and extirpated seabirds after the world's largest multipredator eradication</title><title>Conservation biology</title><addtitle>Conserv Biol</addtitle><description>Eradicating invasive predators from islands can result in substantial recovery of seabirds, but the mechanisms that drive population changes remain poorly understood. Meta‐analyses have recently revealed that immigration is surprisingly important to the recovery of philopatric seabirds, but it is not known whether dispersal and philopatry interact predictably to determine rates of population growth and changes of distribution. We used whole‐island surveys and long‐term monitoring plots to study the abundance, distribution, and trends of 4 burrowing seabird species on Macquarie Island, Australia, to examine the legacy impacts of invasive species and ongoing responses to the world's largest eradication of multiple species of vertebrates. Wekas (Gallirallus australis) were eradicated in 1988; cats (Felis catus) in 2001; and rabbits (Oryctolagus cuniculus), black rats (Rattus rattus), and mice (Mus mus) in 2011–2014. We compared surveys from 1976–1979 and 2017–2018 and monitoring from the 1990s and 2000s onward. Antarctic prions (Pachyptila desolata) and white‐headed petrels (Pterodroma lessonii) increased ∼1% per year. Blue petrels (Halobaena caerulea) and gray petrels (Procellaria cinerea) recolonized following extirpation from the main island in the 1900s but remained spatially and numerically rare in 2018. However, they increased rapidly at 14% and 10% per year, respectively, since cat eradication in 2001. Blue and gray petrel recolonization occurred on steep, dry, west‐facing slopes close to ridgelines at low elevation (i.e., high‐quality petrel habitat). They overlapped <5% with the distribution of Antarctic prion and white‐headed petrels which occurred in suboptimal shallow, wet, east‐facing slopes at high elevation. We inferred that the speed of population growth of recolonizing species was related to their numerically smaller starting size compared with the established species and was driven by immigration and selection of ideal habitat.
Patrones de recuperación en aves marinas existentes y extirpadas después de la mayor erradicación mundial de multidepredadores
Resumen
La erradicación de depredadores invasores en las islas puede derivar en la recuperación sustancial de aves marinas, aunque entendemos muy poco los mecanismos que causan los cambios poblacionales. Los metaanálisis recientes han revelado que la inmigración es de gran importancia para la recuperación de aves marinas filopátricas, aunque no sabemos si la dispersión y la filopatría interactúan de forma predecible para poder determinar las tasas de crecimiento poblacional y los cambios en la distribución. Aplicamos censos de isla completa y parcelas de monitoreo a largo plazo para estudiar la abundancia, distribución y tendencias de cuatro especies de aves marinas cavadoras en la Isla Macquarie, Australia, para analizar los impactos heredados de las especies invasoras y la respuesta continua a la mayor erradicación mundial de varias especies de vertebrados. El rascón weka (Gallirallus australis) se erradicó en 1988; los gatos (Felis catus) en 2001; y los conejos (Oryctolagus cuniculus), ratas (Rattus rattus) y ratones (Mus mus) entre 2011 y 2014. Comparamos los censos de 1976–1979 y 2017–2018 y el monitoreo realizado en los 90s y del año 2000 en adelante. El pato petrel antártico (Pachyptila desolata) y el petrel cabeciblanco (Pterodroma lessonii) incrementaron ∼1% por año. El petrel azulado (Halobaena caerulea) y la pardela gris (Procellaria cinerea) recolonizaron la isla después de su extirpación en la década de 1900, pero todavía eran especies raras espacial y numéricamente en 2018. Sin embargo, esta especie incrementó rápidamente en un 14% y 10% por año respectivamente desde que se erradicaron los gatos en 2001. La recolonización ocurrió desde las laderas empinadas, secas y con orientación al oeste en los sistemas montañosos de baja elevación (es decir, hábitats de gran calidad para los petreles). La distribución del petrel azulado y la pardela gris ocurrió en laderas someras subóptimas y húmedas con orientación al este a altas elevaciones. Esta distribución se traslapó menos del 5% con la del pato petrel antártico y la del petrel cabeciblanco. Inferimos que la velocidad del crecimiento poblacional de las especies que recolonizaron estuvo relacionada con el menor tamaño inicial en comparación con las especies establecidas y fue causada por la inmigración y la selección del hábitat ideal.
【摘要】
消灭岛屿上的入侵捕食者可以帮助海鸟大幅恢复, 但目前对种群变化的驱动机制仍知之甚少。近期的一项荟萃分析表明, 鸟类个体迁入对归巢海鸟的恢复具有惊人的重要作用, 但人们还不知道扩散和归巢行为是否存在可预测的相互作用, 来决定种群增长率和分布范围变化。本研究利用全岛调查和位点长期监测研究了澳大利亚麦格理岛上四种穴居海鸟的丰度、分布和种群趋势, 以分析入侵物种的遗留影响以及这些海鸟对世界上最大规模的多种脊椎动物消灭行动的持续响应。该地区于 1988 年消灭了新西兰秧鸡 (Gallirallus australis); 2001 年消灭了猫 (Felis catus); 并在 2011–2014 年消灭了兔子 (Oryctolagus cuniculus) 、黑鼠 (Rattus rattus) 和小鼠 (Mus mus) 。我们比较了 1976–1979 年和 2017–2018 年的调查以及 20 世纪 90 年代和 21 世纪以来的监测。结果表明, 南极锯鹱 (Pachyptila desolata) 和白头海燕 (Pterodroma lessonii) 每年增长 ~1% 。蓝海燕 (Halobaena caerulea) 和灰海燕 (Procellaria cinerea) 于 20 世纪在主岛的消灭行动后重新定殖, 但直到 2018 年在空间和数量上仍然较为稀少。不过, 自 2001 年消灭掉猫以来, 它们分别以每年 14% 和 10% 的速度迅速增加。重新定殖区主要在靠近山脊线陡峭、干燥、朝西的低海拔斜坡上 (即海燕高质量栖息地) 。蓝海燕和灰海燕分布在次优的平缓、潮湿、朝东的较高海拔斜坡上, 与南极锯鹱和白头海燕分布区的重叠率小于 5% 。我们推断, 重新定殖物种的种群增长率与其相较于已建群物种较低的建群数量有关, 并受到迁入和适宜栖息地选择的驱动。【翻译: 胡怡思; 审校: 聂永刚】</description><subject>altitude</subject><subject>Animals</subject><subject>Antarctic region</subject><subject>Aquatic birds</subject><subject>Australia</subject><subject>Birds</subject><subject>Cats</subject><subject>colony formation</subject><subject>Dispersal</subject><subject>Eradication</subject><subject>Felis catus</subject><subject>filopatría</subject><subject>formación de colonias</subject><subject>Gallirallus</subject><subject>Gallirallus australis</subject><subject>Geographical distribution</subject><subject>Habitats</subject><subject>Halobaena caerulea</subject><subject>Immigration</subject><subject>inmigración</subject><subject>Introduced species</subject><subject>Introduced Species - statistics & numerical data</subject><subject>Invasive species</subject><subject>island restoration</subject><subject>Islands</subject><subject>Marinas</subject><subject>meta-analysis</subject><subject>Mice</subject><subject>Monitoring</subject><subject>Oryctolagus cuniculus</subject><subject>Pachyptila</subject><subject>Pachyptila desolata</subject><subject>Philopatry</subject><subject>Population changes</subject><subject>Population Control - statistics & numerical data</subject><subject>Population dynamics</subject><subject>Population Growth</subject><subject>Population studies</subject><subject>Predators</subject><subject>Predatory Behavior</subject><subject>Prion protein</subject><subject>Prions</subject><subject>Procellaria cinerea</subject><subject>Procellariiformes</subject><subject>Pterodroma lessonii</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Rattus rattus</subject><subject>Recolonization</subject><subject>Recovery</subject><subject>restauración de islas</subject><subject>Seabirds</subject><subject>species</subject><subject>Surveys</subject><subject>Vertebrates</subject><subject>wildlife management</subject><subject>岛屿恢复</subject><subject>归巢</subject><subject>迁入</subject><subject>鸟群</subject><subject>鹱形目</subject><issn>0888-8892</issn><issn>1523-1739</issn><issn>1523-1739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqF0U9vFCEYBnDS2Ni1eukHMCQeappMhWEY4Fg3Wps0qQc9E_68o2xmhxUY2_32Zd22Bw8tF0j48QR4EDqh5JzW8clFG85p1zJ1gBaUt6yhgqlXaEGklI2Uqj1Cb3JeEUIUp91rdMQkE7wn7QKtvptSIE0ZxwEncPEvpC0OE4a7YqaCzeR3y5A2poDHGYwNyWdshnoKl9-Ab2Ma_WnGo0m_IBe8nscSNgm8KTFhSMYHZ0qI01t0OJgxw7uH-Rj9_Prlx_Jbc31zebW8uG4ck1w1rR-IE0CYH5xk3DLZKQZe-rptOke6TgydkU71A6HKS2essbal1FpBrVDsGH3c525S_DPXK-l1yA7G0UwQ56wZ5azvBRXiRdqqVkrO6g9W-uE_uopzmupDNCOS9R0njFd1tlcuxZwTDHqTwtqkraZE78rSu7L0v7Iqfv8QOds1-Cf62E4FdA9uwwjbZ6L08ubz1T70HueWoBs</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Bird, Jeremy P.</creator><creator>Fuller, Richard A.</creator><creator>Shaw, Justine D.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7466-1755</orcidid><orcidid>https://orcid.org/0000-0001-9468-9678</orcidid><orcidid>https://orcid.org/0000-0002-9603-2271</orcidid></search><sort><creationdate>202408</creationdate><title>Patterns of recovery in extant and extirpated seabirds after the world's largest multipredator eradication</title><author>Bird, Jeremy P. ; Fuller, Richard A. ; Shaw, Justine D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3859-2df0c7e03dfc835b38493ed8dc38a4c0447f4a8c96f019d8cababb211bb71b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>altitude</topic><topic>Animals</topic><topic>Antarctic region</topic><topic>Aquatic birds</topic><topic>Australia</topic><topic>Birds</topic><topic>Cats</topic><topic>colony formation</topic><topic>Dispersal</topic><topic>Eradication</topic><topic>Felis catus</topic><topic>filopatría</topic><topic>formación de colonias</topic><topic>Gallirallus</topic><topic>Gallirallus australis</topic><topic>Geographical distribution</topic><topic>Habitats</topic><topic>Halobaena caerulea</topic><topic>Immigration</topic><topic>inmigración</topic><topic>Introduced species</topic><topic>Introduced Species - statistics & numerical data</topic><topic>Invasive species</topic><topic>island restoration</topic><topic>Islands</topic><topic>Marinas</topic><topic>meta-analysis</topic><topic>Mice</topic><topic>Monitoring</topic><topic>Oryctolagus cuniculus</topic><topic>Pachyptila</topic><topic>Pachyptila desolata</topic><topic>Philopatry</topic><topic>Population changes</topic><topic>Population Control - statistics & numerical data</topic><topic>Population dynamics</topic><topic>Population Growth</topic><topic>Population studies</topic><topic>Predators</topic><topic>Predatory Behavior</topic><topic>Prion protein</topic><topic>Prions</topic><topic>Procellaria cinerea</topic><topic>Procellariiformes</topic><topic>Pterodroma lessonii</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Rattus rattus</topic><topic>Recolonization</topic><topic>Recovery</topic><topic>restauración de islas</topic><topic>Seabirds</topic><topic>species</topic><topic>Surveys</topic><topic>Vertebrates</topic><topic>wildlife management</topic><topic>岛屿恢复</topic><topic>归巢</topic><topic>迁入</topic><topic>鸟群</topic><topic>鹱形目</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bird, Jeremy P.</creatorcontrib><creatorcontrib>Fuller, Richard A.</creatorcontrib><creatorcontrib>Shaw, Justine D.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Conservation biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bird, Jeremy P.</au><au>Fuller, Richard A.</au><au>Shaw, Justine D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns of recovery in extant and extirpated seabirds after the world's largest multipredator eradication</atitle><jtitle>Conservation biology</jtitle><addtitle>Conserv Biol</addtitle><date>2024-08</date><risdate>2024</risdate><volume>38</volume><issue>4</issue><spage>e14239</spage><epage>n/a</epage><pages>e14239-n/a</pages><issn>0888-8892</issn><issn>1523-1739</issn><eissn>1523-1739</eissn><abstract>Eradicating invasive predators from islands can result in substantial recovery of seabirds, but the mechanisms that drive population changes remain poorly understood. Meta‐analyses have recently revealed that immigration is surprisingly important to the recovery of philopatric seabirds, but it is not known whether dispersal and philopatry interact predictably to determine rates of population growth and changes of distribution. We used whole‐island surveys and long‐term monitoring plots to study the abundance, distribution, and trends of 4 burrowing seabird species on Macquarie Island, Australia, to examine the legacy impacts of invasive species and ongoing responses to the world's largest eradication of multiple species of vertebrates. Wekas (Gallirallus australis) were eradicated in 1988; cats (Felis catus) in 2001; and rabbits (Oryctolagus cuniculus), black rats (Rattus rattus), and mice (Mus mus) in 2011–2014. We compared surveys from 1976–1979 and 2017–2018 and monitoring from the 1990s and 2000s onward. Antarctic prions (Pachyptila desolata) and white‐headed petrels (Pterodroma lessonii) increased ∼1% per year. Blue petrels (Halobaena caerulea) and gray petrels (Procellaria cinerea) recolonized following extirpation from the main island in the 1900s but remained spatially and numerically rare in 2018. However, they increased rapidly at 14% and 10% per year, respectively, since cat eradication in 2001. Blue and gray petrel recolonization occurred on steep, dry, west‐facing slopes close to ridgelines at low elevation (i.e., high‐quality petrel habitat). They overlapped <5% with the distribution of Antarctic prion and white‐headed petrels which occurred in suboptimal shallow, wet, east‐facing slopes at high elevation. We inferred that the speed of population growth of recolonizing species was related to their numerically smaller starting size compared with the established species and was driven by immigration and selection of ideal habitat.
Patrones de recuperación en aves marinas existentes y extirpadas después de la mayor erradicación mundial de multidepredadores
Resumen
La erradicación de depredadores invasores en las islas puede derivar en la recuperación sustancial de aves marinas, aunque entendemos muy poco los mecanismos que causan los cambios poblacionales. Los metaanálisis recientes han revelado que la inmigración es de gran importancia para la recuperación de aves marinas filopátricas, aunque no sabemos si la dispersión y la filopatría interactúan de forma predecible para poder determinar las tasas de crecimiento poblacional y los cambios en la distribución. Aplicamos censos de isla completa y parcelas de monitoreo a largo plazo para estudiar la abundancia, distribución y tendencias de cuatro especies de aves marinas cavadoras en la Isla Macquarie, Australia, para analizar los impactos heredados de las especies invasoras y la respuesta continua a la mayor erradicación mundial de varias especies de vertebrados. El rascón weka (Gallirallus australis) se erradicó en 1988; los gatos (Felis catus) en 2001; y los conejos (Oryctolagus cuniculus), ratas (Rattus rattus) y ratones (Mus mus) entre 2011 y 2014. Comparamos los censos de 1976–1979 y 2017–2018 y el monitoreo realizado en los 90s y del año 2000 en adelante. El pato petrel antártico (Pachyptila desolata) y el petrel cabeciblanco (Pterodroma lessonii) incrementaron ∼1% por año. El petrel azulado (Halobaena caerulea) y la pardela gris (Procellaria cinerea) recolonizaron la isla después de su extirpación en la década de 1900, pero todavía eran especies raras espacial y numéricamente en 2018. Sin embargo, esta especie incrementó rápidamente en un 14% y 10% por año respectivamente desde que se erradicaron los gatos en 2001. La recolonización ocurrió desde las laderas empinadas, secas y con orientación al oeste en los sistemas montañosos de baja elevación (es decir, hábitats de gran calidad para los petreles). La distribución del petrel azulado y la pardela gris ocurrió en laderas someras subóptimas y húmedas con orientación al este a altas elevaciones. Esta distribución se traslapó menos del 5% con la del pato petrel antártico y la del petrel cabeciblanco. Inferimos que la velocidad del crecimiento poblacional de las especies que recolonizaron estuvo relacionada con el menor tamaño inicial en comparación con las especies establecidas y fue causada por la inmigración y la selección del hábitat ideal.
【摘要】
消灭岛屿上的入侵捕食者可以帮助海鸟大幅恢复, 但目前对种群变化的驱动机制仍知之甚少。近期的一项荟萃分析表明, 鸟类个体迁入对归巢海鸟的恢复具有惊人的重要作用, 但人们还不知道扩散和归巢行为是否存在可预测的相互作用, 来决定种群增长率和分布范围变化。本研究利用全岛调查和位点长期监测研究了澳大利亚麦格理岛上四种穴居海鸟的丰度、分布和种群趋势, 以分析入侵物种的遗留影响以及这些海鸟对世界上最大规模的多种脊椎动物消灭行动的持续响应。该地区于 1988 年消灭了新西兰秧鸡 (Gallirallus australis); 2001 年消灭了猫 (Felis catus); 并在 2011–2014 年消灭了兔子 (Oryctolagus cuniculus) 、黑鼠 (Rattus rattus) 和小鼠 (Mus mus) 。我们比较了 1976–1979 年和 2017–2018 年的调查以及 20 世纪 90 年代和 21 世纪以来的监测。结果表明, 南极锯鹱 (Pachyptila desolata) 和白头海燕 (Pterodroma lessonii) 每年增长 ~1% 。蓝海燕 (Halobaena caerulea) 和灰海燕 (Procellaria cinerea) 于 20 世纪在主岛的消灭行动后重新定殖, 但直到 2018 年在空间和数量上仍然较为稀少。不过, 自 2001 年消灭掉猫以来, 它们分别以每年 14% 和 10% 的速度迅速增加。重新定殖区主要在靠近山脊线陡峭、干燥、朝西的低海拔斜坡上 (即海燕高质量栖息地) 。蓝海燕和灰海燕分布在次优的平缓、潮湿、朝东的较高海拔斜坡上, 与南极锯鹱和白头海燕分布区的重叠率小于 5% 。我们推断, 重新定殖物种的种群增长率与其相较于已建群物种较低的建群数量有关, 并受到迁入和适宜栖息地选择的驱动。【翻译: 胡怡思; 审校: 聂永刚】</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>38375602</pmid><doi>10.1111/cobi.14239</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7466-1755</orcidid><orcidid>https://orcid.org/0000-0001-9468-9678</orcidid><orcidid>https://orcid.org/0000-0002-9603-2271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-8892 |
ispartof | Conservation biology, 2024-08, Vol.38 (4), p.e14239-n/a |
issn | 0888-8892 1523-1739 1523-1739 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153667177 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | altitude Animals Antarctic region Aquatic birds Australia Birds Cats colony formation Dispersal Eradication Felis catus filopatría formación de colonias Gallirallus Gallirallus australis Geographical distribution Habitats Halobaena caerulea Immigration inmigración Introduced species Introduced Species - statistics & numerical data Invasive species island restoration Islands Marinas meta-analysis Mice Monitoring Oryctolagus cuniculus Pachyptila Pachyptila desolata Philopatry Population changes Population Control - statistics & numerical data Population dynamics Population Growth Population studies Predators Predatory Behavior Prion protein Prions Procellaria cinerea Procellariiformes Pterodroma lessonii Rabbits Rats Rattus rattus Recolonization Recovery restauración de islas Seabirds species Surveys Vertebrates wildlife management 岛屿恢复 归巢 迁入 鸟群 鹱形目 |
title | Patterns of recovery in extant and extirpated seabirds after the world's largest multipredator eradication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20of%20recovery%20in%20extant%20and%20extirpated%20seabirds%20after%20the%20world's%20largest%20multipredator%20eradication&rft.jtitle=Conservation%20biology&rft.au=Bird,%20Jeremy%20P.&rft.date=2024-08&rft.volume=38&rft.issue=4&rft.spage=e14239&rft.epage=n/a&rft.pages=e14239-n/a&rft.issn=0888-8892&rft.eissn=1523-1739&rft_id=info:doi/10.1111/cobi.14239&rft_dat=%3Cproquest_cross%3E3153667177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083645035&rft_id=info:pmid/38375602&rfr_iscdi=true |