Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations

Context Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2024-06, Vol.30 (6), p.173-173, Article 173
Hauptverfasser: Yuan, Longxiao, Liang, Xiaodan, He, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue 6
container_start_page 173
container_title Journal of molecular modeling
container_volume 30
creator Yuan, Longxiao
Liang, Xiaodan
He, Lei
description Context Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the pre-PHD-PHD (PPHD) domain of UHRF1 hinders the nuclear localization of UHRF1. This disruption has implications for potential cancer treatment strategies. Drugs that mimic the binding pattern between DPPA3 and PPHD could offer a promising approach to cancer treatment. Our study reveals that DPPA3 undergoes dissociation from the C-terminal through three different modes of helix unfolding. Furthermore, we have identified key residue pairs involved in this dissociation process and potential drug-targeting residues. These findings offer valuable insights into the dissociation mechanism of DPPA3 from PPHD and have the potential to inform the design of novel drugs targeting UHRF1 for cancer therapy. Methods To comprehend the dissociation process and binding patterns of PPHD-DPPA3, we employed enhanced sampling techniques, including steered molecular dynamics (SMD) and conventional molecular dynamics (cMD). Additionally, we utilized self-organizing maps (SOM) and time-resolved force distribution analysis (TRFDA) methodologies. The Gromacs software was used for performing molecular dynamics simulations, and the AMBER FF14SB force field was applied to the protein.
doi_str_mv 10.1007/s00894-024-05946-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153666640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057073001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-cac413cd8f7b1de73a0324e11d79ec6205e95a20a97d3b8c8cf76380f37d64e93</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoNY7KXtH-hCAm7cTD35mkyWpdpWKFjEux5ykzNtykxmTGaK3frLzb23VXChgRAOefKeJA8hpwzOGID-kAEaIyvgZSoj68q8IiswsqkUcPGarFjNoOJGwiE5yfkBABhXteL8DTkUja61FnJFfq7jI4Y-xDvqQ86jC3YOY6QDunsbQx4ytdHTTYh-y0x2njHFTEOk8z3S9fXXS1Z9vL09F9SNw9TjD_oYLB2Wfg5VwqkPrlRjj27pbaL-KdohuExzKMiuVT4mB53tM548r0dkffnp28V1dfPl6vPF-U3lhDJz5ayTTDjfdHrDPGphQXCJjHlt0NUcFBplOVijvdg0rnGdrkUDndC-lmjEEXm_z53S-H3BPLdDyA773kYcl9wKpkRdhoT_o6A0aFG-tKDv_kIfxiXF8pAdxRppQBWK7ymXxpwTdu2UwmDTU8ug3fps9z7b4rPd-Wy3F377HL1sBvS_j7zYK4DYA7lsxTtMf3r_I_YXDSWrfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057184905</pqid></control><display><type>article</type><title>Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Yuan, Longxiao ; Liang, Xiaodan ; He, Lei</creator><creatorcontrib>Yuan, Longxiao ; Liang, Xiaodan ; He, Lei</creatorcontrib><description>Context Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the pre-PHD-PHD (PPHD) domain of UHRF1 hinders the nuclear localization of UHRF1. This disruption has implications for potential cancer treatment strategies. Drugs that mimic the binding pattern between DPPA3 and PPHD could offer a promising approach to cancer treatment. Our study reveals that DPPA3 undergoes dissociation from the C-terminal through three different modes of helix unfolding. Furthermore, we have identified key residue pairs involved in this dissociation process and potential drug-targeting residues. These findings offer valuable insights into the dissociation mechanism of DPPA3 from PPHD and have the potential to inform the design of novel drugs targeting UHRF1 for cancer therapy. Methods To comprehend the dissociation process and binding patterns of PPHD-DPPA3, we employed enhanced sampling techniques, including steered molecular dynamics (SMD) and conventional molecular dynamics (cMD). Additionally, we utilized self-organizing maps (SOM) and time-resolved force distribution analysis (TRFDA) methodologies. The Gromacs software was used for performing molecular dynamics simulations, and the AMBER FF14SB force field was applied to the protein.</description><identifier>ISSN: 1610-2940</identifier><identifier>ISSN: 0948-5023</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-024-05946-9</identifier><identifier>PMID: 38767734</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Binding ; Binding Sites ; Cancer ; Cancer therapies ; cancer therapy ; CCAAT-Enhancer-Binding Proteins - chemistry ; CCAAT-Enhancer-Binding Proteins - metabolism ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; computer software ; dissociation ; DNA methyltransferase ; domain ; Drugs ; Force distribution ; genomics ; Humans ; methylation ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Medicine ; Original Paper ; Protein Binding ; Proteins ; Residues ; RING finger domains ; Self organizing maps ; Theoretical and Computational Chemistry ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Journal of molecular modeling, 2024-06, Vol.30 (6), p.173-173, Article 173</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-cac413cd8f7b1de73a0324e11d79ec6205e95a20a97d3b8c8cf76380f37d64e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-024-05946-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-024-05946-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38767734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Longxiao</creatorcontrib><creatorcontrib>Liang, Xiaodan</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><title>Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>Context Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the pre-PHD-PHD (PPHD) domain of UHRF1 hinders the nuclear localization of UHRF1. This disruption has implications for potential cancer treatment strategies. Drugs that mimic the binding pattern between DPPA3 and PPHD could offer a promising approach to cancer treatment. Our study reveals that DPPA3 undergoes dissociation from the C-terminal through three different modes of helix unfolding. Furthermore, we have identified key residue pairs involved in this dissociation process and potential drug-targeting residues. These findings offer valuable insights into the dissociation mechanism of DPPA3 from PPHD and have the potential to inform the design of novel drugs targeting UHRF1 for cancer therapy. Methods To comprehend the dissociation process and binding patterns of PPHD-DPPA3, we employed enhanced sampling techniques, including steered molecular dynamics (SMD) and conventional molecular dynamics (cMD). Additionally, we utilized self-organizing maps (SOM) and time-resolved force distribution analysis (TRFDA) methodologies. The Gromacs software was used for performing molecular dynamics simulations, and the AMBER FF14SB force field was applied to the protein.</description><subject>Binding</subject><subject>Binding Sites</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>cancer therapy</subject><subject>CCAAT-Enhancer-Binding Proteins - chemistry</subject><subject>CCAAT-Enhancer-Binding Proteins - metabolism</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>computer software</subject><subject>dissociation</subject><subject>DNA methyltransferase</subject><subject>domain</subject><subject>Drugs</subject><subject>Force distribution</subject><subject>genomics</subject><subject>Humans</subject><subject>methylation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Residues</subject><subject>RING finger domains</subject><subject>Self organizing maps</subject><subject>Theoretical and Computational Chemistry</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>1610-2940</issn><issn>0948-5023</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1rFTEUhoNY7KXtH-hCAm7cTD35mkyWpdpWKFjEux5ykzNtykxmTGaK3frLzb23VXChgRAOefKeJA8hpwzOGID-kAEaIyvgZSoj68q8IiswsqkUcPGarFjNoOJGwiE5yfkBABhXteL8DTkUja61FnJFfq7jI4Y-xDvqQ86jC3YOY6QDunsbQx4ytdHTTYh-y0x2njHFTEOk8z3S9fXXS1Z9vL09F9SNw9TjD_oYLB2Wfg5VwqkPrlRjj27pbaL-KdohuExzKMiuVT4mB53tM548r0dkffnp28V1dfPl6vPF-U3lhDJz5ayTTDjfdHrDPGphQXCJjHlt0NUcFBplOVijvdg0rnGdrkUDndC-lmjEEXm_z53S-H3BPLdDyA773kYcl9wKpkRdhoT_o6A0aFG-tKDv_kIfxiXF8pAdxRppQBWK7ymXxpwTdu2UwmDTU8ug3fps9z7b4rPd-Wy3F377HL1sBvS_j7zYK4DYA7lsxTtMf3r_I_YXDSWrfw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yuan, Longxiao</creator><creator>Liang, Xiaodan</creator><creator>He, Lei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240601</creationdate><title>Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations</title><author>Yuan, Longxiao ; Liang, Xiaodan ; He, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-cac413cd8f7b1de73a0324e11d79ec6205e95a20a97d3b8c8cf76380f37d64e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>Binding Sites</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>cancer therapy</topic><topic>CCAAT-Enhancer-Binding Proteins - chemistry</topic><topic>CCAAT-Enhancer-Binding Proteins - metabolism</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>computer software</topic><topic>dissociation</topic><topic>DNA methyltransferase</topic><topic>domain</topic><topic>Drugs</topic><topic>Force distribution</topic><topic>genomics</topic><topic>Humans</topic><topic>methylation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Residues</topic><topic>RING finger domains</topic><topic>Self organizing maps</topic><topic>Theoretical and Computational Chemistry</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Longxiao</creatorcontrib><creatorcontrib>Liang, Xiaodan</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Longxiao</au><au>Liang, Xiaodan</au><au>He, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>30</volume><issue>6</issue><spage>173</spage><epage>173</epage><pages>173-173</pages><artnum>173</artnum><issn>1610-2940</issn><issn>0948-5023</issn><eissn>0948-5023</eissn><abstract>Context Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the pre-PHD-PHD (PPHD) domain of UHRF1 hinders the nuclear localization of UHRF1. This disruption has implications for potential cancer treatment strategies. Drugs that mimic the binding pattern between DPPA3 and PPHD could offer a promising approach to cancer treatment. Our study reveals that DPPA3 undergoes dissociation from the C-terminal through three different modes of helix unfolding. Furthermore, we have identified key residue pairs involved in this dissociation process and potential drug-targeting residues. These findings offer valuable insights into the dissociation mechanism of DPPA3 from PPHD and have the potential to inform the design of novel drugs targeting UHRF1 for cancer therapy. Methods To comprehend the dissociation process and binding patterns of PPHD-DPPA3, we employed enhanced sampling techniques, including steered molecular dynamics (SMD) and conventional molecular dynamics (cMD). Additionally, we utilized self-organizing maps (SOM) and time-resolved force distribution analysis (TRFDA) methodologies. The Gromacs software was used for performing molecular dynamics simulations, and the AMBER FF14SB force field was applied to the protein.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38767734</pmid><doi>10.1007/s00894-024-05946-9</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2024-06, Vol.30 (6), p.173-173, Article 173
issn 1610-2940
0948-5023
0948-5023
language eng
recordid cdi_proquest_miscellaneous_3153666640
source MEDLINE; SpringerLink Journals
subjects Binding
Binding Sites
Cancer
Cancer therapies
cancer therapy
CCAAT-Enhancer-Binding Proteins - chemistry
CCAAT-Enhancer-Binding Proteins - metabolism
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
computer software
dissociation
DNA methyltransferase
domain
Drugs
Force distribution
genomics
Humans
methylation
Molecular dynamics
Molecular Dynamics Simulation
Molecular Medicine
Original Paper
Protein Binding
Proteins
Residues
RING finger domains
Self organizing maps
Theoretical and Computational Chemistry
Ubiquitin-Protein Ligases - chemistry
Ubiquitin-Protein Ligases - metabolism
title Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20dissociation%20mechanisms%20and%20binding%20patterns%20in%20the%20UHRF1-DPPA3%20complex%20via%20multi-replica%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Yuan,%20Longxiao&rft.date=2024-06-01&rft.volume=30&rft.issue=6&rft.spage=173&rft.epage=173&rft.pages=173-173&rft.artnum=173&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-024-05946-9&rft_dat=%3Cproquest_cross%3E3057073001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057184905&rft_id=info:pmid/38767734&rfr_iscdi=true