Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations
Context Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the...
Gespeichert in:
Veröffentlicht in: | Journal of molecular modeling 2024-06, Vol.30 (6), p.173-173, Article 173 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | 6 |
container_start_page | 173 |
container_title | Journal of molecular modeling |
container_volume | 30 |
creator | Yuan, Longxiao Liang, Xiaodan He, Lei |
description | Context
Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the pre-PHD-PHD (PPHD) domain of UHRF1 hinders the nuclear localization of UHRF1. This disruption has implications for potential cancer treatment strategies. Drugs that mimic the binding pattern between DPPA3 and PPHD could offer a promising approach to cancer treatment. Our study reveals that DPPA3 undergoes dissociation from the C-terminal through three different modes of helix unfolding. Furthermore, we have identified key residue pairs involved in this dissociation process and potential drug-targeting residues. These findings offer valuable insights into the dissociation mechanism of DPPA3 from PPHD and have the potential to inform the design of novel drugs targeting UHRF1 for cancer therapy.
Methods
To comprehend the dissociation process and binding patterns of PPHD-DPPA3, we employed enhanced sampling techniques, including steered molecular dynamics (SMD) and conventional molecular dynamics (cMD). Additionally, we utilized self-organizing maps (SOM) and time-resolved force distribution analysis (TRFDA) methodologies. The Gromacs software was used for performing molecular dynamics simulations, and the AMBER FF14SB force field was applied to the protein. |
doi_str_mv | 10.1007/s00894-024-05946-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153666640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057073001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-cac413cd8f7b1de73a0324e11d79ec6205e95a20a97d3b8c8cf76380f37d64e93</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoNY7KXtH-hCAm7cTD35mkyWpdpWKFjEux5ykzNtykxmTGaK3frLzb23VXChgRAOefKeJA8hpwzOGID-kAEaIyvgZSoj68q8IiswsqkUcPGarFjNoOJGwiE5yfkBABhXteL8DTkUja61FnJFfq7jI4Y-xDvqQ86jC3YOY6QDunsbQx4ytdHTTYh-y0x2njHFTEOk8z3S9fXXS1Z9vL09F9SNw9TjD_oYLB2Wfg5VwqkPrlRjj27pbaL-KdohuExzKMiuVT4mB53tM548r0dkffnp28V1dfPl6vPF-U3lhDJz5ayTTDjfdHrDPGphQXCJjHlt0NUcFBplOVijvdg0rnGdrkUDndC-lmjEEXm_z53S-H3BPLdDyA773kYcl9wKpkRdhoT_o6A0aFG-tKDv_kIfxiXF8pAdxRppQBWK7ymXxpwTdu2UwmDTU8ug3fps9z7b4rPd-Wy3F377HL1sBvS_j7zYK4DYA7lsxTtMf3r_I_YXDSWrfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057184905</pqid></control><display><type>article</type><title>Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Yuan, Longxiao ; Liang, Xiaodan ; He, Lei</creator><creatorcontrib>Yuan, Longxiao ; Liang, Xiaodan ; He, Lei</creatorcontrib><description>Context
Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the pre-PHD-PHD (PPHD) domain of UHRF1 hinders the nuclear localization of UHRF1. This disruption has implications for potential cancer treatment strategies. Drugs that mimic the binding pattern between DPPA3 and PPHD could offer a promising approach to cancer treatment. Our study reveals that DPPA3 undergoes dissociation from the C-terminal through three different modes of helix unfolding. Furthermore, we have identified key residue pairs involved in this dissociation process and potential drug-targeting residues. These findings offer valuable insights into the dissociation mechanism of DPPA3 from PPHD and have the potential to inform the design of novel drugs targeting UHRF1 for cancer therapy.
Methods
To comprehend the dissociation process and binding patterns of PPHD-DPPA3, we employed enhanced sampling techniques, including steered molecular dynamics (SMD) and conventional molecular dynamics (cMD). Additionally, we utilized self-organizing maps (SOM) and time-resolved force distribution analysis (TRFDA) methodologies. The Gromacs software was used for performing molecular dynamics simulations, and the AMBER FF14SB force field was applied to the protein.</description><identifier>ISSN: 1610-2940</identifier><identifier>ISSN: 0948-5023</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-024-05946-9</identifier><identifier>PMID: 38767734</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Binding ; Binding Sites ; Cancer ; Cancer therapies ; cancer therapy ; CCAAT-Enhancer-Binding Proteins - chemistry ; CCAAT-Enhancer-Binding Proteins - metabolism ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; computer software ; dissociation ; DNA methyltransferase ; domain ; Drugs ; Force distribution ; genomics ; Humans ; methylation ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Medicine ; Original Paper ; Protein Binding ; Proteins ; Residues ; RING finger domains ; Self organizing maps ; Theoretical and Computational Chemistry ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Journal of molecular modeling, 2024-06, Vol.30 (6), p.173-173, Article 173</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-cac413cd8f7b1de73a0324e11d79ec6205e95a20a97d3b8c8cf76380f37d64e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-024-05946-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-024-05946-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38767734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Longxiao</creatorcontrib><creatorcontrib>Liang, Xiaodan</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><title>Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>Context
Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the pre-PHD-PHD (PPHD) domain of UHRF1 hinders the nuclear localization of UHRF1. This disruption has implications for potential cancer treatment strategies. Drugs that mimic the binding pattern between DPPA3 and PPHD could offer a promising approach to cancer treatment. Our study reveals that DPPA3 undergoes dissociation from the C-terminal through three different modes of helix unfolding. Furthermore, we have identified key residue pairs involved in this dissociation process and potential drug-targeting residues. These findings offer valuable insights into the dissociation mechanism of DPPA3 from PPHD and have the potential to inform the design of novel drugs targeting UHRF1 for cancer therapy.
Methods
To comprehend the dissociation process and binding patterns of PPHD-DPPA3, we employed enhanced sampling techniques, including steered molecular dynamics (SMD) and conventional molecular dynamics (cMD). Additionally, we utilized self-organizing maps (SOM) and time-resolved force distribution analysis (TRFDA) methodologies. The Gromacs software was used for performing molecular dynamics simulations, and the AMBER FF14SB force field was applied to the protein.</description><subject>Binding</subject><subject>Binding Sites</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>cancer therapy</subject><subject>CCAAT-Enhancer-Binding Proteins - chemistry</subject><subject>CCAAT-Enhancer-Binding Proteins - metabolism</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>computer software</subject><subject>dissociation</subject><subject>DNA methyltransferase</subject><subject>domain</subject><subject>Drugs</subject><subject>Force distribution</subject><subject>genomics</subject><subject>Humans</subject><subject>methylation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Residues</subject><subject>RING finger domains</subject><subject>Self organizing maps</subject><subject>Theoretical and Computational Chemistry</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>1610-2940</issn><issn>0948-5023</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1rFTEUhoNY7KXtH-hCAm7cTD35mkyWpdpWKFjEux5ykzNtykxmTGaK3frLzb23VXChgRAOefKeJA8hpwzOGID-kAEaIyvgZSoj68q8IiswsqkUcPGarFjNoOJGwiE5yfkBABhXteL8DTkUja61FnJFfq7jI4Y-xDvqQ86jC3YOY6QDunsbQx4ytdHTTYh-y0x2njHFTEOk8z3S9fXXS1Z9vL09F9SNw9TjD_oYLB2Wfg5VwqkPrlRjj27pbaL-KdohuExzKMiuVT4mB53tM548r0dkffnp28V1dfPl6vPF-U3lhDJz5ayTTDjfdHrDPGphQXCJjHlt0NUcFBplOVijvdg0rnGdrkUDndC-lmjEEXm_z53S-H3BPLdDyA773kYcl9wKpkRdhoT_o6A0aFG-tKDv_kIfxiXF8pAdxRppQBWK7ymXxpwTdu2UwmDTU8ug3fps9z7b4rPd-Wy3F377HL1sBvS_j7zYK4DYA7lsxTtMf3r_I_YXDSWrfw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yuan, Longxiao</creator><creator>Liang, Xiaodan</creator><creator>He, Lei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240601</creationdate><title>Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations</title><author>Yuan, Longxiao ; Liang, Xiaodan ; He, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-cac413cd8f7b1de73a0324e11d79ec6205e95a20a97d3b8c8cf76380f37d64e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>Binding Sites</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>cancer therapy</topic><topic>CCAAT-Enhancer-Binding Proteins - chemistry</topic><topic>CCAAT-Enhancer-Binding Proteins - metabolism</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>computer software</topic><topic>dissociation</topic><topic>DNA methyltransferase</topic><topic>domain</topic><topic>Drugs</topic><topic>Force distribution</topic><topic>genomics</topic><topic>Humans</topic><topic>methylation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Residues</topic><topic>RING finger domains</topic><topic>Self organizing maps</topic><topic>Theoretical and Computational Chemistry</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Longxiao</creatorcontrib><creatorcontrib>Liang, Xiaodan</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Longxiao</au><au>Liang, Xiaodan</au><au>He, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>30</volume><issue>6</issue><spage>173</spage><epage>173</epage><pages>173-173</pages><artnum>173</artnum><issn>1610-2940</issn><issn>0948-5023</issn><eissn>0948-5023</eissn><abstract>Context
Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the pre-PHD-PHD (PPHD) domain of UHRF1 hinders the nuclear localization of UHRF1. This disruption has implications for potential cancer treatment strategies. Drugs that mimic the binding pattern between DPPA3 and PPHD could offer a promising approach to cancer treatment. Our study reveals that DPPA3 undergoes dissociation from the C-terminal through three different modes of helix unfolding. Furthermore, we have identified key residue pairs involved in this dissociation process and potential drug-targeting residues. These findings offer valuable insights into the dissociation mechanism of DPPA3 from PPHD and have the potential to inform the design of novel drugs targeting UHRF1 for cancer therapy.
Methods
To comprehend the dissociation process and binding patterns of PPHD-DPPA3, we employed enhanced sampling techniques, including steered molecular dynamics (SMD) and conventional molecular dynamics (cMD). Additionally, we utilized self-organizing maps (SOM) and time-resolved force distribution analysis (TRFDA) methodologies. The Gromacs software was used for performing molecular dynamics simulations, and the AMBER FF14SB force field was applied to the protein.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38767734</pmid><doi>10.1007/s00894-024-05946-9</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-2940 |
ispartof | Journal of molecular modeling, 2024-06, Vol.30 (6), p.173-173, Article 173 |
issn | 1610-2940 0948-5023 0948-5023 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153666640 |
source | MEDLINE; SpringerLink Journals |
subjects | Binding Binding Sites Cancer Cancer therapies cancer therapy CCAAT-Enhancer-Binding Proteins - chemistry CCAAT-Enhancer-Binding Proteins - metabolism Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry computer software dissociation DNA methyltransferase domain Drugs Force distribution genomics Humans methylation Molecular dynamics Molecular Dynamics Simulation Molecular Medicine Original Paper Protein Binding Proteins Residues RING finger domains Self organizing maps Theoretical and Computational Chemistry Ubiquitin-Protein Ligases - chemistry Ubiquitin-Protein Ligases - metabolism |
title | Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20dissociation%20mechanisms%20and%20binding%20patterns%20in%20the%20UHRF1-DPPA3%20complex%20via%20multi-replica%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Yuan,%20Longxiao&rft.date=2024-06-01&rft.volume=30&rft.issue=6&rft.spage=173&rft.epage=173&rft.pages=173-173&rft.artnum=173&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-024-05946-9&rft_dat=%3Cproquest_cross%3E3057073001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057184905&rft_id=info:pmid/38767734&rfr_iscdi=true |