Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond
Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-07, Vol.146 (27), p.18639-18649 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18649 |
---|---|
container_issue | 27 |
container_start_page | 18639 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Kang, Hongxing He, Dong Turchiano, Christopher Yan, Xingxu Chai, Jingtong Weed, Melanie Elliott, Gregory I. Onofrei, David Pan, Xiaoqing Xiao, Xiangheng Gu, Jing |
description | Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial economic loss. Alternatively, constructing value-added chemical feedstocks via mining the waste-derived intermediate species as a carbon (C) source under mild electrochemical conditions is a sustainable strategy to realize the circular economy. This proof-of-concept work provides an attractive “turning trash to treasure” strategy by integrating electrocatalytic polyethylene terephthalate (PET) plastic upcycling with a chemical C–S coupling reaction to synthesize organosulfur compounds, hydroxymethanesulfonate (HMS). HMS can be produced efficiently (Faradaic efficiency, FE of ∼70%) via deliberately capturing electrophilic intermediates generated in the PET monomer (ethylene glycol, EG) upcycling process, followed by coupling them with nucleophilic sulfur (S) species (i.e., SO3 2– and HSO3 –). Unlike many previous studies conducted under alkaline conditions, PET upcycling was performed over an amorphous MnO2 catalyst under near-neutral conditions, allowing for the stabilization of electrophilic intermediates. The compatibility of this strategy was further investigated by employing biomass-derived compounds as substrates. Moreover, comparable HMS yields can be achieved with real-world PET plastics, showing its enormous potential in practical application. Lastly, Density function theory (DFT) calculation reveals that the C–C cleavage step of EG is the rate-determining step (RDS), and amorphous MnO2 significantly decreases the energy barriers for both RDS and C–S coupling when compared to the crystalline counterpart. |
doi_str_mv | 10.1021/jacs.4c05512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153665160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072001780</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-684aaac3a750feba6e85977ab84ac49b3a313eeb95c4b0ab509bb365dfaad9653</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EouWyMSOPDKT4EjvOCBGXSkUgQWGMjl0HUqVOsZOhG-_AG_IkJGqBBYnpXPSd_0gfQkeUjChh9GwOJoxiQ4SgbAsNqWAk6lq5jYaEEBYlSvIB2gth3o0xU3QXDbhKqRRKDtHTbelK94KbV4sz8Lp2eOwa6xd2VkJjAy4dvq8gNKXBz12xeLo0K1P1N0XtcVa70PjWNP0i-3z_eMAXtZsdoJ0CqmAPN3UfTa8uH7ObaHJ3Pc7OJxEwxZpIqhgADIdEkMJqkFaJNElAd3sTp5oDp9xanQoTawJakFRrLsWsAJilUvB9dLLOXfr6rbWhyRdlMLaqwNm6DTmngkspqCT_oyRhhNBE9ejpGjW-DsHbIl_6cgF-lVOS99LzXnq-kd7hx5vkVnfefuBvy7-v-6t53XrXOfk76wsnTotR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072001780</pqid></control><display><type>article</type><title>Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond</title><source>ACS Publications</source><creator>Kang, Hongxing ; He, Dong ; Turchiano, Christopher ; Yan, Xingxu ; Chai, Jingtong ; Weed, Melanie ; Elliott, Gregory I. ; Onofrei, David ; Pan, Xiaoqing ; Xiao, Xiangheng ; Gu, Jing</creator><creatorcontrib>Kang, Hongxing ; He, Dong ; Turchiano, Christopher ; Yan, Xingxu ; Chai, Jingtong ; Weed, Melanie ; Elliott, Gregory I. ; Onofrei, David ; Pan, Xiaoqing ; Xiao, Xiangheng ; Gu, Jing</creatorcontrib><description>Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial economic loss. Alternatively, constructing value-added chemical feedstocks via mining the waste-derived intermediate species as a carbon (C) source under mild electrochemical conditions is a sustainable strategy to realize the circular economy. This proof-of-concept work provides an attractive “turning trash to treasure” strategy by integrating electrocatalytic polyethylene terephthalate (PET) plastic upcycling with a chemical C–S coupling reaction to synthesize organosulfur compounds, hydroxymethanesulfonate (HMS). HMS can be produced efficiently (Faradaic efficiency, FE of ∼70%) via deliberately capturing electrophilic intermediates generated in the PET monomer (ethylene glycol, EG) upcycling process, followed by coupling them with nucleophilic sulfur (S) species (i.e., SO3 2– and HSO3 –). Unlike many previous studies conducted under alkaline conditions, PET upcycling was performed over an amorphous MnO2 catalyst under near-neutral conditions, allowing for the stabilization of electrophilic intermediates. The compatibility of this strategy was further investigated by employing biomass-derived compounds as substrates. Moreover, comparable HMS yields can be achieved with real-world PET plastics, showing its enormous potential in practical application. Lastly, Density function theory (DFT) calculation reveals that the C–C cleavage step of EG is the rate-determining step (RDS), and amorphous MnO2 significantly decreases the energy barriers for both RDS and C–S coupling when compared to the crystalline counterpart.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c05512</identifier><identifier>PMID: 38916586</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>carbon ; catalysts ; circular economy ; electrochemistry ; energy ; feedstocks ; financial economics ; Lewis acids ; Lewis bases ; polyethylene terephthalates ; species ; sulfur ; value added ; wastes</subject><ispartof>Journal of the American Chemical Society, 2024-07, Vol.146 (27), p.18639-18649</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a282t-684aaac3a750feba6e85977ab84ac49b3a313eeb95c4b0ab509bb365dfaad9653</cites><orcidid>0000-0003-3173-3795 ; 0000-0001-7991-4849 ; 0000-0001-9111-1619 ; 0000-0002-5506-0049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c05512$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c05512$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38916586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Hongxing</creatorcontrib><creatorcontrib>He, Dong</creatorcontrib><creatorcontrib>Turchiano, Christopher</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Chai, Jingtong</creatorcontrib><creatorcontrib>Weed, Melanie</creatorcontrib><creatorcontrib>Elliott, Gregory I.</creatorcontrib><creatorcontrib>Onofrei, David</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Xiao, Xiangheng</creatorcontrib><creatorcontrib>Gu, Jing</creatorcontrib><title>Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial economic loss. Alternatively, constructing value-added chemical feedstocks via mining the waste-derived intermediate species as a carbon (C) source under mild electrochemical conditions is a sustainable strategy to realize the circular economy. This proof-of-concept work provides an attractive “turning trash to treasure” strategy by integrating electrocatalytic polyethylene terephthalate (PET) plastic upcycling with a chemical C–S coupling reaction to synthesize organosulfur compounds, hydroxymethanesulfonate (HMS). HMS can be produced efficiently (Faradaic efficiency, FE of ∼70%) via deliberately capturing electrophilic intermediates generated in the PET monomer (ethylene glycol, EG) upcycling process, followed by coupling them with nucleophilic sulfur (S) species (i.e., SO3 2– and HSO3 –). Unlike many previous studies conducted under alkaline conditions, PET upcycling was performed over an amorphous MnO2 catalyst under near-neutral conditions, allowing for the stabilization of electrophilic intermediates. The compatibility of this strategy was further investigated by employing biomass-derived compounds as substrates. Moreover, comparable HMS yields can be achieved with real-world PET plastics, showing its enormous potential in practical application. Lastly, Density function theory (DFT) calculation reveals that the C–C cleavage step of EG is the rate-determining step (RDS), and amorphous MnO2 significantly decreases the energy barriers for both RDS and C–S coupling when compared to the crystalline counterpart.</description><subject>carbon</subject><subject>catalysts</subject><subject>circular economy</subject><subject>electrochemistry</subject><subject>energy</subject><subject>feedstocks</subject><subject>financial economics</subject><subject>Lewis acids</subject><subject>Lewis bases</subject><subject>polyethylene terephthalates</subject><subject>species</subject><subject>sulfur</subject><subject>value added</subject><subject>wastes</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EouWyMSOPDKT4EjvOCBGXSkUgQWGMjl0HUqVOsZOhG-_AG_IkJGqBBYnpXPSd_0gfQkeUjChh9GwOJoxiQ4SgbAsNqWAk6lq5jYaEEBYlSvIB2gth3o0xU3QXDbhKqRRKDtHTbelK94KbV4sz8Lp2eOwa6xd2VkJjAy4dvq8gNKXBz12xeLo0K1P1N0XtcVa70PjWNP0i-3z_eMAXtZsdoJ0CqmAPN3UfTa8uH7ObaHJ3Pc7OJxEwxZpIqhgADIdEkMJqkFaJNElAd3sTp5oDp9xanQoTawJakFRrLsWsAJilUvB9dLLOXfr6rbWhyRdlMLaqwNm6DTmngkspqCT_oyRhhNBE9ejpGjW-DsHbIl_6cgF-lVOS99LzXnq-kd7hx5vkVnfefuBvy7-v-6t53XrXOfk76wsnTotR</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Kang, Hongxing</creator><creator>He, Dong</creator><creator>Turchiano, Christopher</creator><creator>Yan, Xingxu</creator><creator>Chai, Jingtong</creator><creator>Weed, Melanie</creator><creator>Elliott, Gregory I.</creator><creator>Onofrei, David</creator><creator>Pan, Xiaoqing</creator><creator>Xiao, Xiangheng</creator><creator>Gu, Jing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3173-3795</orcidid><orcidid>https://orcid.org/0000-0001-7991-4849</orcidid><orcidid>https://orcid.org/0000-0001-9111-1619</orcidid><orcidid>https://orcid.org/0000-0002-5506-0049</orcidid></search><sort><creationdate>20240710</creationdate><title>Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond</title><author>Kang, Hongxing ; He, Dong ; Turchiano, Christopher ; Yan, Xingxu ; Chai, Jingtong ; Weed, Melanie ; Elliott, Gregory I. ; Onofrei, David ; Pan, Xiaoqing ; Xiao, Xiangheng ; Gu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-684aaac3a750feba6e85977ab84ac49b3a313eeb95c4b0ab509bb365dfaad9653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>carbon</topic><topic>catalysts</topic><topic>circular economy</topic><topic>electrochemistry</topic><topic>energy</topic><topic>feedstocks</topic><topic>financial economics</topic><topic>Lewis acids</topic><topic>Lewis bases</topic><topic>polyethylene terephthalates</topic><topic>species</topic><topic>sulfur</topic><topic>value added</topic><topic>wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Hongxing</creatorcontrib><creatorcontrib>He, Dong</creatorcontrib><creatorcontrib>Turchiano, Christopher</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Chai, Jingtong</creatorcontrib><creatorcontrib>Weed, Melanie</creatorcontrib><creatorcontrib>Elliott, Gregory I.</creatorcontrib><creatorcontrib>Onofrei, David</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Xiao, Xiangheng</creatorcontrib><creatorcontrib>Gu, Jing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Hongxing</au><au>He, Dong</au><au>Turchiano, Christopher</au><au>Yan, Xingxu</au><au>Chai, Jingtong</au><au>Weed, Melanie</au><au>Elliott, Gregory I.</au><au>Onofrei, David</au><au>Pan, Xiaoqing</au><au>Xiao, Xiangheng</au><au>Gu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-07-10</date><risdate>2024</risdate><volume>146</volume><issue>27</issue><spage>18639</spage><epage>18649</epage><pages>18639-18649</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial economic loss. Alternatively, constructing value-added chemical feedstocks via mining the waste-derived intermediate species as a carbon (C) source under mild electrochemical conditions is a sustainable strategy to realize the circular economy. This proof-of-concept work provides an attractive “turning trash to treasure” strategy by integrating electrocatalytic polyethylene terephthalate (PET) plastic upcycling with a chemical C–S coupling reaction to synthesize organosulfur compounds, hydroxymethanesulfonate (HMS). HMS can be produced efficiently (Faradaic efficiency, FE of ∼70%) via deliberately capturing electrophilic intermediates generated in the PET monomer (ethylene glycol, EG) upcycling process, followed by coupling them with nucleophilic sulfur (S) species (i.e., SO3 2– and HSO3 –). Unlike many previous studies conducted under alkaline conditions, PET upcycling was performed over an amorphous MnO2 catalyst under near-neutral conditions, allowing for the stabilization of electrophilic intermediates. The compatibility of this strategy was further investigated by employing biomass-derived compounds as substrates. Moreover, comparable HMS yields can be achieved with real-world PET plastics, showing its enormous potential in practical application. Lastly, Density function theory (DFT) calculation reveals that the C–C cleavage step of EG is the rate-determining step (RDS), and amorphous MnO2 significantly decreases the energy barriers for both RDS and C–S coupling when compared to the crystalline counterpart.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38916586</pmid><doi>10.1021/jacs.4c05512</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3173-3795</orcidid><orcidid>https://orcid.org/0000-0001-7991-4849</orcidid><orcidid>https://orcid.org/0000-0001-9111-1619</orcidid><orcidid>https://orcid.org/0000-0002-5506-0049</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-07, Vol.146 (27), p.18639-18649 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153665160 |
source | ACS Publications |
subjects | carbon catalysts circular economy electrochemistry energy feedstocks financial economics Lewis acids Lewis bases polyethylene terephthalates species sulfur value added wastes |
title | Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20the%20Carbon%20Intermediates%20in%20Plastic%20Waste%20Upcycling%20for%20Constructing%20C%E2%80%93S%20Bond&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Kang,%20Hongxing&rft.date=2024-07-10&rft.volume=146&rft.issue=27&rft.spage=18639&rft.epage=18649&rft.pages=18639-18649&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c05512&rft_dat=%3Cproquest_cross%3E3072001780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072001780&rft_id=info:pmid/38916586&rfr_iscdi=true |