Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond

Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-07, Vol.146 (27), p.18639-18649
Hauptverfasser: Kang, Hongxing, He, Dong, Turchiano, Christopher, Yan, Xingxu, Chai, Jingtong, Weed, Melanie, Elliott, Gregory I., Onofrei, David, Pan, Xiaoqing, Xiao, Xiangheng, Gu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18649
container_issue 27
container_start_page 18639
container_title Journal of the American Chemical Society
container_volume 146
creator Kang, Hongxing
He, Dong
Turchiano, Christopher
Yan, Xingxu
Chai, Jingtong
Weed, Melanie
Elliott, Gregory I.
Onofrei, David
Pan, Xiaoqing
Xiao, Xiangheng
Gu, Jing
description Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial economic loss. Alternatively, constructing value-added chemical feedstocks via mining the waste-derived intermediate species as a carbon (C) source under mild electrochemical conditions is a sustainable strategy to realize the circular economy. This proof-of-concept work provides an attractive “turning trash to treasure” strategy by integrating electrocatalytic polyethylene terephthalate (PET) plastic upcycling with a chemical C–S coupling reaction to synthesize organosulfur compounds, hydroxymethanesulfonate (HMS). HMS can be produced efficiently (Faradaic efficiency, FE of ∼70%) via deliberately capturing electrophilic intermediates generated in the PET monomer (ethylene glycol, EG) upcycling process, followed by coupling them with nucleophilic sulfur (S) species (i.e., SO3 2– and HSO3 –). Unlike many previous studies conducted under alkaline conditions, PET upcycling was performed over an amorphous MnO2 catalyst under near-neutral conditions, allowing for the stabilization of electrophilic intermediates. The compatibility of this strategy was further investigated by employing biomass-derived compounds as substrates. Moreover, comparable HMS yields can be achieved with real-world PET plastics, showing its enormous potential in practical application. Lastly, Density function theory (DFT) calculation reveals that the C–C cleavage step of EG is the rate-determining step (RDS), and amorphous MnO2 significantly decreases the energy barriers for both RDS and C–S coupling when compared to the crystalline counterpart.
doi_str_mv 10.1021/jacs.4c05512
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153665160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072001780</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-684aaac3a750feba6e85977ab84ac49b3a313eeb95c4b0ab509bb365dfaad9653</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EouWyMSOPDKT4EjvOCBGXSkUgQWGMjl0HUqVOsZOhG-_AG_IkJGqBBYnpXPSd_0gfQkeUjChh9GwOJoxiQ4SgbAsNqWAk6lq5jYaEEBYlSvIB2gth3o0xU3QXDbhKqRRKDtHTbelK94KbV4sz8Lp2eOwa6xd2VkJjAy4dvq8gNKXBz12xeLo0K1P1N0XtcVa70PjWNP0i-3z_eMAXtZsdoJ0CqmAPN3UfTa8uH7ObaHJ3Pc7OJxEwxZpIqhgADIdEkMJqkFaJNElAd3sTp5oDp9xanQoTawJakFRrLsWsAJilUvB9dLLOXfr6rbWhyRdlMLaqwNm6DTmngkspqCT_oyRhhNBE9ejpGjW-DsHbIl_6cgF-lVOS99LzXnq-kd7hx5vkVnfefuBvy7-v-6t53XrXOfk76wsnTotR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072001780</pqid></control><display><type>article</type><title>Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond</title><source>ACS Publications</source><creator>Kang, Hongxing ; He, Dong ; Turchiano, Christopher ; Yan, Xingxu ; Chai, Jingtong ; Weed, Melanie ; Elliott, Gregory I. ; Onofrei, David ; Pan, Xiaoqing ; Xiao, Xiangheng ; Gu, Jing</creator><creatorcontrib>Kang, Hongxing ; He, Dong ; Turchiano, Christopher ; Yan, Xingxu ; Chai, Jingtong ; Weed, Melanie ; Elliott, Gregory I. ; Onofrei, David ; Pan, Xiaoqing ; Xiao, Xiangheng ; Gu, Jing</creatorcontrib><description>Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial economic loss. Alternatively, constructing value-added chemical feedstocks via mining the waste-derived intermediate species as a carbon (C) source under mild electrochemical conditions is a sustainable strategy to realize the circular economy. This proof-of-concept work provides an attractive “turning trash to treasure” strategy by integrating electrocatalytic polyethylene terephthalate (PET) plastic upcycling with a chemical C–S coupling reaction to synthesize organosulfur compounds, hydroxymethanesulfonate (HMS). HMS can be produced efficiently (Faradaic efficiency, FE of ∼70%) via deliberately capturing electrophilic intermediates generated in the PET monomer (ethylene glycol, EG) upcycling process, followed by coupling them with nucleophilic sulfur (S) species (i.e., SO3 2– and HSO3 –). Unlike many previous studies conducted under alkaline conditions, PET upcycling was performed over an amorphous MnO2 catalyst under near-neutral conditions, allowing for the stabilization of electrophilic intermediates. The compatibility of this strategy was further investigated by employing biomass-derived compounds as substrates. Moreover, comparable HMS yields can be achieved with real-world PET plastics, showing its enormous potential in practical application. Lastly, Density function theory (DFT) calculation reveals that the C–C cleavage step of EG is the rate-determining step (RDS), and amorphous MnO2 significantly decreases the energy barriers for both RDS and C–S coupling when compared to the crystalline counterpart.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c05512</identifier><identifier>PMID: 38916586</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>carbon ; catalysts ; circular economy ; electrochemistry ; energy ; feedstocks ; financial economics ; Lewis acids ; Lewis bases ; polyethylene terephthalates ; species ; sulfur ; value added ; wastes</subject><ispartof>Journal of the American Chemical Society, 2024-07, Vol.146 (27), p.18639-18649</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a282t-684aaac3a750feba6e85977ab84ac49b3a313eeb95c4b0ab509bb365dfaad9653</cites><orcidid>0000-0003-3173-3795 ; 0000-0001-7991-4849 ; 0000-0001-9111-1619 ; 0000-0002-5506-0049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c05512$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c05512$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38916586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Hongxing</creatorcontrib><creatorcontrib>He, Dong</creatorcontrib><creatorcontrib>Turchiano, Christopher</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Chai, Jingtong</creatorcontrib><creatorcontrib>Weed, Melanie</creatorcontrib><creatorcontrib>Elliott, Gregory I.</creatorcontrib><creatorcontrib>Onofrei, David</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Xiao, Xiangheng</creatorcontrib><creatorcontrib>Gu, Jing</creatorcontrib><title>Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial economic loss. Alternatively, constructing value-added chemical feedstocks via mining the waste-derived intermediate species as a carbon (C) source under mild electrochemical conditions is a sustainable strategy to realize the circular economy. This proof-of-concept work provides an attractive “turning trash to treasure” strategy by integrating electrocatalytic polyethylene terephthalate (PET) plastic upcycling with a chemical C–S coupling reaction to synthesize organosulfur compounds, hydroxymethanesulfonate (HMS). HMS can be produced efficiently (Faradaic efficiency, FE of ∼70%) via deliberately capturing electrophilic intermediates generated in the PET monomer (ethylene glycol, EG) upcycling process, followed by coupling them with nucleophilic sulfur (S) species (i.e., SO3 2– and HSO3 –). Unlike many previous studies conducted under alkaline conditions, PET upcycling was performed over an amorphous MnO2 catalyst under near-neutral conditions, allowing for the stabilization of electrophilic intermediates. The compatibility of this strategy was further investigated by employing biomass-derived compounds as substrates. Moreover, comparable HMS yields can be achieved with real-world PET plastics, showing its enormous potential in practical application. Lastly, Density function theory (DFT) calculation reveals that the C–C cleavage step of EG is the rate-determining step (RDS), and amorphous MnO2 significantly decreases the energy barriers for both RDS and C–S coupling when compared to the crystalline counterpart.</description><subject>carbon</subject><subject>catalysts</subject><subject>circular economy</subject><subject>electrochemistry</subject><subject>energy</subject><subject>feedstocks</subject><subject>financial economics</subject><subject>Lewis acids</subject><subject>Lewis bases</subject><subject>polyethylene terephthalates</subject><subject>species</subject><subject>sulfur</subject><subject>value added</subject><subject>wastes</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EouWyMSOPDKT4EjvOCBGXSkUgQWGMjl0HUqVOsZOhG-_AG_IkJGqBBYnpXPSd_0gfQkeUjChh9GwOJoxiQ4SgbAsNqWAk6lq5jYaEEBYlSvIB2gth3o0xU3QXDbhKqRRKDtHTbelK94KbV4sz8Lp2eOwa6xd2VkJjAy4dvq8gNKXBz12xeLo0K1P1N0XtcVa70PjWNP0i-3z_eMAXtZsdoJ0CqmAPN3UfTa8uH7ObaHJ3Pc7OJxEwxZpIqhgADIdEkMJqkFaJNElAd3sTp5oDp9xanQoTawJakFRrLsWsAJilUvB9dLLOXfr6rbWhyRdlMLaqwNm6DTmngkspqCT_oyRhhNBE9ejpGjW-DsHbIl_6cgF-lVOS99LzXnq-kd7hx5vkVnfefuBvy7-v-6t53XrXOfk76wsnTotR</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Kang, Hongxing</creator><creator>He, Dong</creator><creator>Turchiano, Christopher</creator><creator>Yan, Xingxu</creator><creator>Chai, Jingtong</creator><creator>Weed, Melanie</creator><creator>Elliott, Gregory I.</creator><creator>Onofrei, David</creator><creator>Pan, Xiaoqing</creator><creator>Xiao, Xiangheng</creator><creator>Gu, Jing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3173-3795</orcidid><orcidid>https://orcid.org/0000-0001-7991-4849</orcidid><orcidid>https://orcid.org/0000-0001-9111-1619</orcidid><orcidid>https://orcid.org/0000-0002-5506-0049</orcidid></search><sort><creationdate>20240710</creationdate><title>Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond</title><author>Kang, Hongxing ; He, Dong ; Turchiano, Christopher ; Yan, Xingxu ; Chai, Jingtong ; Weed, Melanie ; Elliott, Gregory I. ; Onofrei, David ; Pan, Xiaoqing ; Xiao, Xiangheng ; Gu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-684aaac3a750feba6e85977ab84ac49b3a313eeb95c4b0ab509bb365dfaad9653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>carbon</topic><topic>catalysts</topic><topic>circular economy</topic><topic>electrochemistry</topic><topic>energy</topic><topic>feedstocks</topic><topic>financial economics</topic><topic>Lewis acids</topic><topic>Lewis bases</topic><topic>polyethylene terephthalates</topic><topic>species</topic><topic>sulfur</topic><topic>value added</topic><topic>wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Hongxing</creatorcontrib><creatorcontrib>He, Dong</creatorcontrib><creatorcontrib>Turchiano, Christopher</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Chai, Jingtong</creatorcontrib><creatorcontrib>Weed, Melanie</creatorcontrib><creatorcontrib>Elliott, Gregory I.</creatorcontrib><creatorcontrib>Onofrei, David</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Xiao, Xiangheng</creatorcontrib><creatorcontrib>Gu, Jing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Hongxing</au><au>He, Dong</au><au>Turchiano, Christopher</au><au>Yan, Xingxu</au><au>Chai, Jingtong</au><au>Weed, Melanie</au><au>Elliott, Gregory I.</au><au>Onofrei, David</au><au>Pan, Xiaoqing</au><au>Xiao, Xiangheng</au><au>Gu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-07-10</date><risdate>2024</risdate><volume>146</volume><issue>27</issue><spage>18639</spage><epage>18649</epage><pages>18639-18649</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial economic loss. Alternatively, constructing value-added chemical feedstocks via mining the waste-derived intermediate species as a carbon (C) source under mild electrochemical conditions is a sustainable strategy to realize the circular economy. This proof-of-concept work provides an attractive “turning trash to treasure” strategy by integrating electrocatalytic polyethylene terephthalate (PET) plastic upcycling with a chemical C–S coupling reaction to synthesize organosulfur compounds, hydroxymethanesulfonate (HMS). HMS can be produced efficiently (Faradaic efficiency, FE of ∼70%) via deliberately capturing electrophilic intermediates generated in the PET monomer (ethylene glycol, EG) upcycling process, followed by coupling them with nucleophilic sulfur (S) species (i.e., SO3 2– and HSO3 –). Unlike many previous studies conducted under alkaline conditions, PET upcycling was performed over an amorphous MnO2 catalyst under near-neutral conditions, allowing for the stabilization of electrophilic intermediates. The compatibility of this strategy was further investigated by employing biomass-derived compounds as substrates. Moreover, comparable HMS yields can be achieved with real-world PET plastics, showing its enormous potential in practical application. Lastly, Density function theory (DFT) calculation reveals that the C–C cleavage step of EG is the rate-determining step (RDS), and amorphous MnO2 significantly decreases the energy barriers for both RDS and C–S coupling when compared to the crystalline counterpart.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38916586</pmid><doi>10.1021/jacs.4c05512</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3173-3795</orcidid><orcidid>https://orcid.org/0000-0001-7991-4849</orcidid><orcidid>https://orcid.org/0000-0001-9111-1619</orcidid><orcidid>https://orcid.org/0000-0002-5506-0049</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-07, Vol.146 (27), p.18639-18649
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3153665160
source ACS Publications
subjects carbon
catalysts
circular economy
electrochemistry
energy
feedstocks
financial economics
Lewis acids
Lewis bases
polyethylene terephthalates
species
sulfur
value added
wastes
title Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C–S Bond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20the%20Carbon%20Intermediates%20in%20Plastic%20Waste%20Upcycling%20for%20Constructing%20C%E2%80%93S%20Bond&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Kang,%20Hongxing&rft.date=2024-07-10&rft.volume=146&rft.issue=27&rft.spage=18639&rft.epage=18649&rft.pages=18639-18649&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c05512&rft_dat=%3Cproquest_cross%3E3072001780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072001780&rft_id=info:pmid/38916586&rfr_iscdi=true