Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping
Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut ( ) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombina...
Gespeichert in:
Veröffentlicht in: | Phytopathology 2024-06, Vol.114 (6), p.1346-1355 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1355 |
---|---|
container_issue | 6 |
container_start_page | 1346 |
container_title | Phytopathology |
container_volume | 114 |
creator | Gangurde, Sunil S Thompson, Ethan Yaduru, Shasidhar Wang, Hui Fountain, Jake C Chu, Ye Ozias-Akins, Peggy Isleib, Thomas G Holbrook, Corley Dutta, Bhabesh Culbreath, Albert K Pandey, Manish K Guo, Baozhu |
description | Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut (
) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping population has been genotyped with the peanut 58K single-nucleotide polymorphism (SNP) array and phenotyped for LLS severity in the field for 3 years. Joint linkage-based quantitative trait locus (QTL) mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained up to 47.7%. A genome-wide association study identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 to 1,520 kb (184 kb) on chromosome B02 and from 1,026.9 to 1,793.2 kb (767 kb) on chromosome B03, designated as peanut LLS resistance loci,
-1 and
-2, respectively.
-1 contains 10 nucleotide-binding site leucine-rich repeat disease resistance genes. A nucleotide-binding site leucine-rich repeat disease resistance gene,
, was also identified on homoeologous chromosome A02.
-2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat, acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as nested association mapping for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding. |
doi_str_mv | 10.1094/PHYTO-04-23-0143-R |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153664324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153664324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-77405b1b4acd9e6bc37a0a3bf0420929e2b2a10d0b149a7d0bdc3d4a08feff473</originalsourceid><addsrcrecordid>eNqFUctu1DAUtRCIDoUfYIG8ZFGXa_vm4WVVQVsp0NHMVMDKcuKbyjDjhDgR6tfwq820A2LX1X3ovKTD2FsJpxIMflheft9cC0ChtACJWqyesYU081LkJT5nCwAthUHz7Yi9SukHABRllr9kR7rMc4M5LtifKsSf7pb4Z9f3Id5yFz2_oNjtSHwNnvhZSl0T3Bi6yNfj5O_4lac4hjaQ55vfHV-Si9PIKzcSr8i1fN13I19RCml0sZmfM_-EL6tqveJCPhgcDnXCb9Le9AulcZb73-uQ5zV70bptojeHecxuPn3cnF-K6vri6vysEo3KYBRFgZDVskbXeEN53ejCgdN1C6jAKEOqVk6Ch1qiccU8faM9Oihbalss9DF7_6jbD92vaY5jdyE1tN26SN2UrJaZznPUCp-GAhYmU6Upn4Qqg0oCYLmHqkdoM3QpDdTafgg7N9xZCXZft32o2wJape2-bruaSe8O-lO9I_-P8rdffQ9dNaVa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2942100488</pqid></control><display><type>article</type><title>Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Gangurde, Sunil S ; Thompson, Ethan ; Yaduru, Shasidhar ; Wang, Hui ; Fountain, Jake C ; Chu, Ye ; Ozias-Akins, Peggy ; Isleib, Thomas G ; Holbrook, Corley ; Dutta, Bhabesh ; Culbreath, Albert K ; Pandey, Manish K ; Guo, Baozhu</creator><creatorcontrib>Gangurde, Sunil S ; Thompson, Ethan ; Yaduru, Shasidhar ; Wang, Hui ; Fountain, Jake C ; Chu, Ye ; Ozias-Akins, Peggy ; Isleib, Thomas G ; Holbrook, Corley ; Dutta, Bhabesh ; Culbreath, Albert K ; Pandey, Manish K ; Guo, Baozhu</creatorcontrib><description>Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut (
) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping population has been genotyped with the peanut 58K single-nucleotide polymorphism (SNP) array and phenotyped for LLS severity in the field for 3 years. Joint linkage-based quantitative trait locus (QTL) mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained up to 47.7%. A genome-wide association study identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 to 1,520 kb (184 kb) on chromosome B02 and from 1,026.9 to 1,793.2 kb (767 kb) on chromosome B03, designated as peanut LLS resistance loci,
-1 and
-2, respectively.
-1 contains 10 nucleotide-binding site leucine-rich repeat disease resistance genes. A nucleotide-binding site leucine-rich repeat disease resistance gene,
, was also identified on homoeologous chromosome A02.
-2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat, acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as nested association mapping for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.</description><identifier>ISSN: 0031-949X</identifier><identifier>EISSN: 1943-7684</identifier><identifier>DOI: 10.1094/PHYTO-04-23-0143-R</identifier><identifier>PMID: 38669464</identifier><language>eng</language><publisher>United States</publisher><subject>1,3-beta-glucan synthase ; Arachis - genetics ; Arachis - immunology ; Arachis - microbiology ; Arachis hypogaea ; Ascomycota - genetics ; Ascomycota - physiology ; Chromosome Mapping ; chromosomes ; Chromosomes, Plant - genetics ; disease resistance ; Disease Resistance - genetics ; Genetic Linkage ; Genetic Markers - genetics ; genetic recombination ; Genome-Wide Association Study ; genomics ; Genotype ; genotyping ; Greece ; leaf spot ; peanuts ; Phenotype ; phenotypic variation ; Plant Diseases - genetics ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant Leaves - genetics ; Plant Leaves - microbiology ; pollen ; Polymorphism, Single Nucleotide - genetics ; quantitative trait loci ; Quantitative Trait Loci - genetics ; resistance genes ; single nucleotide polymorphism</subject><ispartof>Phytopathology, 2024-06, Vol.114 (6), p.1346-1355</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-77405b1b4acd9e6bc37a0a3bf0420929e2b2a10d0b149a7d0bdc3d4a08feff473</cites><orcidid>0000-0001-9841-257X ; 0000-0002-8520-578X ; 0000-0002-9079-7126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38669464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gangurde, Sunil S</creatorcontrib><creatorcontrib>Thompson, Ethan</creatorcontrib><creatorcontrib>Yaduru, Shasidhar</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Fountain, Jake C</creatorcontrib><creatorcontrib>Chu, Ye</creatorcontrib><creatorcontrib>Ozias-Akins, Peggy</creatorcontrib><creatorcontrib>Isleib, Thomas G</creatorcontrib><creatorcontrib>Holbrook, Corley</creatorcontrib><creatorcontrib>Dutta, Bhabesh</creatorcontrib><creatorcontrib>Culbreath, Albert K</creatorcontrib><creatorcontrib>Pandey, Manish K</creatorcontrib><creatorcontrib>Guo, Baozhu</creatorcontrib><title>Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping</title><title>Phytopathology</title><addtitle>Phytopathology</addtitle><description>Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut (
) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping population has been genotyped with the peanut 58K single-nucleotide polymorphism (SNP) array and phenotyped for LLS severity in the field for 3 years. Joint linkage-based quantitative trait locus (QTL) mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained up to 47.7%. A genome-wide association study identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 to 1,520 kb (184 kb) on chromosome B02 and from 1,026.9 to 1,793.2 kb (767 kb) on chromosome B03, designated as peanut LLS resistance loci,
-1 and
-2, respectively.
-1 contains 10 nucleotide-binding site leucine-rich repeat disease resistance genes. A nucleotide-binding site leucine-rich repeat disease resistance gene,
, was also identified on homoeologous chromosome A02.
-2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat, acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as nested association mapping for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.</description><subject>1,3-beta-glucan synthase</subject><subject>Arachis - genetics</subject><subject>Arachis - immunology</subject><subject>Arachis - microbiology</subject><subject>Arachis hypogaea</subject><subject>Ascomycota - genetics</subject><subject>Ascomycota - physiology</subject><subject>Chromosome Mapping</subject><subject>chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Genetic Linkage</subject><subject>Genetic Markers - genetics</subject><subject>genetic recombination</subject><subject>Genome-Wide Association Study</subject><subject>genomics</subject><subject>Genotype</subject><subject>genotyping</subject><subject>Greece</subject><subject>leaf spot</subject><subject>peanuts</subject><subject>Phenotype</subject><subject>phenotypic variation</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - microbiology</subject><subject>pollen</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>resistance genes</subject><subject>single nucleotide polymorphism</subject><issn>0031-949X</issn><issn>1943-7684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctu1DAUtRCIDoUfYIG8ZFGXa_vm4WVVQVsp0NHMVMDKcuKbyjDjhDgR6tfwq820A2LX1X3ovKTD2FsJpxIMflheft9cC0ChtACJWqyesYU081LkJT5nCwAthUHz7Yi9SukHABRllr9kR7rMc4M5LtifKsSf7pb4Z9f3Id5yFz2_oNjtSHwNnvhZSl0T3Bi6yNfj5O_4lac4hjaQ55vfHV-Si9PIKzcSr8i1fN13I19RCml0sZmfM_-EL6tqveJCPhgcDnXCb9Le9AulcZb73-uQ5zV70bptojeHecxuPn3cnF-K6vri6vysEo3KYBRFgZDVskbXeEN53ejCgdN1C6jAKEOqVk6Ch1qiccU8faM9Oihbalss9DF7_6jbD92vaY5jdyE1tN26SN2UrJaZznPUCp-GAhYmU6Upn4Qqg0oCYLmHqkdoM3QpDdTafgg7N9xZCXZft32o2wJape2-bruaSe8O-lO9I_-P8rdffQ9dNaVa</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Gangurde, Sunil S</creator><creator>Thompson, Ethan</creator><creator>Yaduru, Shasidhar</creator><creator>Wang, Hui</creator><creator>Fountain, Jake C</creator><creator>Chu, Ye</creator><creator>Ozias-Akins, Peggy</creator><creator>Isleib, Thomas G</creator><creator>Holbrook, Corley</creator><creator>Dutta, Bhabesh</creator><creator>Culbreath, Albert K</creator><creator>Pandey, Manish K</creator><creator>Guo, Baozhu</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9841-257X</orcidid><orcidid>https://orcid.org/0000-0002-8520-578X</orcidid><orcidid>https://orcid.org/0000-0002-9079-7126</orcidid></search><sort><creationdate>202406</creationdate><title>Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping</title><author>Gangurde, Sunil S ; Thompson, Ethan ; Yaduru, Shasidhar ; Wang, Hui ; Fountain, Jake C ; Chu, Ye ; Ozias-Akins, Peggy ; Isleib, Thomas G ; Holbrook, Corley ; Dutta, Bhabesh ; Culbreath, Albert K ; Pandey, Manish K ; Guo, Baozhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-77405b1b4acd9e6bc37a0a3bf0420929e2b2a10d0b149a7d0bdc3d4a08feff473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1,3-beta-glucan synthase</topic><topic>Arachis - genetics</topic><topic>Arachis - immunology</topic><topic>Arachis - microbiology</topic><topic>Arachis hypogaea</topic><topic>Ascomycota - genetics</topic><topic>Ascomycota - physiology</topic><topic>Chromosome Mapping</topic><topic>chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Genetic Linkage</topic><topic>Genetic Markers - genetics</topic><topic>genetic recombination</topic><topic>Genome-Wide Association Study</topic><topic>genomics</topic><topic>Genotype</topic><topic>genotyping</topic><topic>Greece</topic><topic>leaf spot</topic><topic>peanuts</topic><topic>Phenotype</topic><topic>phenotypic variation</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - microbiology</topic><topic>pollen</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>resistance genes</topic><topic>single nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gangurde, Sunil S</creatorcontrib><creatorcontrib>Thompson, Ethan</creatorcontrib><creatorcontrib>Yaduru, Shasidhar</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Fountain, Jake C</creatorcontrib><creatorcontrib>Chu, Ye</creatorcontrib><creatorcontrib>Ozias-Akins, Peggy</creatorcontrib><creatorcontrib>Isleib, Thomas G</creatorcontrib><creatorcontrib>Holbrook, Corley</creatorcontrib><creatorcontrib>Dutta, Bhabesh</creatorcontrib><creatorcontrib>Culbreath, Albert K</creatorcontrib><creatorcontrib>Pandey, Manish K</creatorcontrib><creatorcontrib>Guo, Baozhu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Phytopathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gangurde, Sunil S</au><au>Thompson, Ethan</au><au>Yaduru, Shasidhar</au><au>Wang, Hui</au><au>Fountain, Jake C</au><au>Chu, Ye</au><au>Ozias-Akins, Peggy</au><au>Isleib, Thomas G</au><au>Holbrook, Corley</au><au>Dutta, Bhabesh</au><au>Culbreath, Albert K</au><au>Pandey, Manish K</au><au>Guo, Baozhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping</atitle><jtitle>Phytopathology</jtitle><addtitle>Phytopathology</addtitle><date>2024-06</date><risdate>2024</risdate><volume>114</volume><issue>6</issue><spage>1346</spage><epage>1355</epage><pages>1346-1355</pages><issn>0031-949X</issn><eissn>1943-7684</eissn><abstract>Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut (
) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping population has been genotyped with the peanut 58K single-nucleotide polymorphism (SNP) array and phenotyped for LLS severity in the field for 3 years. Joint linkage-based quantitative trait locus (QTL) mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained up to 47.7%. A genome-wide association study identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 to 1,520 kb (184 kb) on chromosome B02 and from 1,026.9 to 1,793.2 kb (767 kb) on chromosome B03, designated as peanut LLS resistance loci,
-1 and
-2, respectively.
-1 contains 10 nucleotide-binding site leucine-rich repeat disease resistance genes. A nucleotide-binding site leucine-rich repeat disease resistance gene,
, was also identified on homoeologous chromosome A02.
-2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat, acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as nested association mapping for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.</abstract><cop>United States</cop><pmid>38669464</pmid><doi>10.1094/PHYTO-04-23-0143-R</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9841-257X</orcidid><orcidid>https://orcid.org/0000-0002-8520-578X</orcidid><orcidid>https://orcid.org/0000-0002-9079-7126</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-949X |
ispartof | Phytopathology, 2024-06, Vol.114 (6), p.1346-1355 |
issn | 0031-949X 1943-7684 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153664324 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | 1,3-beta-glucan synthase Arachis - genetics Arachis - immunology Arachis - microbiology Arachis hypogaea Ascomycota - genetics Ascomycota - physiology Chromosome Mapping chromosomes Chromosomes, Plant - genetics disease resistance Disease Resistance - genetics Genetic Linkage Genetic Markers - genetics genetic recombination Genome-Wide Association Study genomics Genotype genotyping Greece leaf spot peanuts Phenotype phenotypic variation Plant Diseases - genetics Plant Diseases - immunology Plant Diseases - microbiology Plant Leaves - genetics Plant Leaves - microbiology pollen Polymorphism, Single Nucleotide - genetics quantitative trait loci Quantitative Trait Loci - genetics resistance genes single nucleotide polymorphism |
title | Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linkage%20Mapping%20and%20Genome-Wide%20Association%20Study%20Identified%20Two%20Peanut%20Late%20Leaf%20Spot%20Resistance%20Loci,%20PLLSR%20-1%20and%20PLLSR%20-2,%20Using%20Nested%20Association%20Mapping&rft.jtitle=Phytopathology&rft.au=Gangurde,%20Sunil%20S&rft.date=2024-06&rft.volume=114&rft.issue=6&rft.spage=1346&rft.epage=1355&rft.pages=1346-1355&rft.issn=0031-949X&rft.eissn=1943-7684&rft_id=info:doi/10.1094/PHYTO-04-23-0143-R&rft_dat=%3Cproquest_cross%3E3153664324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2942100488&rft_id=info:pmid/38669464&rfr_iscdi=true |