Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping

Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut ( ) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytopathology 2024-06, Vol.114 (6), p.1346-1355
Hauptverfasser: Gangurde, Sunil S, Thompson, Ethan, Yaduru, Shasidhar, Wang, Hui, Fountain, Jake C, Chu, Ye, Ozias-Akins, Peggy, Isleib, Thomas G, Holbrook, Corley, Dutta, Bhabesh, Culbreath, Albert K, Pandey, Manish K, Guo, Baozhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1355
container_issue 6
container_start_page 1346
container_title Phytopathology
container_volume 114
creator Gangurde, Sunil S
Thompson, Ethan
Yaduru, Shasidhar
Wang, Hui
Fountain, Jake C
Chu, Ye
Ozias-Akins, Peggy
Isleib, Thomas G
Holbrook, Corley
Dutta, Bhabesh
Culbreath, Albert K
Pandey, Manish K
Guo, Baozhu
description Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut ( ) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping population has been genotyped with the peanut 58K single-nucleotide polymorphism (SNP) array and phenotyped for LLS severity in the field for 3 years. Joint linkage-based quantitative trait locus (QTL) mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained up to 47.7%. A genome-wide association study identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 to 1,520 kb (184 kb) on chromosome B02 and from 1,026.9 to 1,793.2 kb (767 kb) on chromosome B03, designated as peanut LLS resistance loci, -1 and -2, respectively. -1 contains 10 nucleotide-binding site leucine-rich repeat disease resistance genes. A nucleotide-binding site leucine-rich repeat disease resistance gene, , was also identified on homoeologous chromosome A02. -2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat, acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as nested association mapping for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.
doi_str_mv 10.1094/PHYTO-04-23-0143-R
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153664324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153664324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-77405b1b4acd9e6bc37a0a3bf0420929e2b2a10d0b149a7d0bdc3d4a08feff473</originalsourceid><addsrcrecordid>eNqFUctu1DAUtRCIDoUfYIG8ZFGXa_vm4WVVQVsp0NHMVMDKcuKbyjDjhDgR6tfwq820A2LX1X3ovKTD2FsJpxIMflheft9cC0ChtACJWqyesYU081LkJT5nCwAthUHz7Yi9SukHABRllr9kR7rMc4M5LtifKsSf7pb4Z9f3Id5yFz2_oNjtSHwNnvhZSl0T3Bi6yNfj5O_4lac4hjaQ55vfHV-Si9PIKzcSr8i1fN13I19RCml0sZmfM_-EL6tqveJCPhgcDnXCb9Le9AulcZb73-uQ5zV70bptojeHecxuPn3cnF-K6vri6vysEo3KYBRFgZDVskbXeEN53ejCgdN1C6jAKEOqVk6Ch1qiccU8faM9Oihbalss9DF7_6jbD92vaY5jdyE1tN26SN2UrJaZznPUCp-GAhYmU6Upn4Qqg0oCYLmHqkdoM3QpDdTafgg7N9xZCXZft32o2wJape2-bruaSe8O-lO9I_-P8rdffQ9dNaVa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2942100488</pqid></control><display><type>article</type><title>Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Gangurde, Sunil S ; Thompson, Ethan ; Yaduru, Shasidhar ; Wang, Hui ; Fountain, Jake C ; Chu, Ye ; Ozias-Akins, Peggy ; Isleib, Thomas G ; Holbrook, Corley ; Dutta, Bhabesh ; Culbreath, Albert K ; Pandey, Manish K ; Guo, Baozhu</creator><creatorcontrib>Gangurde, Sunil S ; Thompson, Ethan ; Yaduru, Shasidhar ; Wang, Hui ; Fountain, Jake C ; Chu, Ye ; Ozias-Akins, Peggy ; Isleib, Thomas G ; Holbrook, Corley ; Dutta, Bhabesh ; Culbreath, Albert K ; Pandey, Manish K ; Guo, Baozhu</creatorcontrib><description>Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut ( ) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping population has been genotyped with the peanut 58K single-nucleotide polymorphism (SNP) array and phenotyped for LLS severity in the field for 3 years. Joint linkage-based quantitative trait locus (QTL) mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained up to 47.7%. A genome-wide association study identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 to 1,520 kb (184 kb) on chromosome B02 and from 1,026.9 to 1,793.2 kb (767 kb) on chromosome B03, designated as peanut LLS resistance loci, -1 and -2, respectively. -1 contains 10 nucleotide-binding site leucine-rich repeat disease resistance genes. A nucleotide-binding site leucine-rich repeat disease resistance gene, , was also identified on homoeologous chromosome A02. -2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat, acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as nested association mapping for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.</description><identifier>ISSN: 0031-949X</identifier><identifier>EISSN: 1943-7684</identifier><identifier>DOI: 10.1094/PHYTO-04-23-0143-R</identifier><identifier>PMID: 38669464</identifier><language>eng</language><publisher>United States</publisher><subject>1,3-beta-glucan synthase ; Arachis - genetics ; Arachis - immunology ; Arachis - microbiology ; Arachis hypogaea ; Ascomycota - genetics ; Ascomycota - physiology ; Chromosome Mapping ; chromosomes ; Chromosomes, Plant - genetics ; disease resistance ; Disease Resistance - genetics ; Genetic Linkage ; Genetic Markers - genetics ; genetic recombination ; Genome-Wide Association Study ; genomics ; Genotype ; genotyping ; Greece ; leaf spot ; peanuts ; Phenotype ; phenotypic variation ; Plant Diseases - genetics ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant Leaves - genetics ; Plant Leaves - microbiology ; pollen ; Polymorphism, Single Nucleotide - genetics ; quantitative trait loci ; Quantitative Trait Loci - genetics ; resistance genes ; single nucleotide polymorphism</subject><ispartof>Phytopathology, 2024-06, Vol.114 (6), p.1346-1355</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-77405b1b4acd9e6bc37a0a3bf0420929e2b2a10d0b149a7d0bdc3d4a08feff473</cites><orcidid>0000-0001-9841-257X ; 0000-0002-8520-578X ; 0000-0002-9079-7126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38669464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gangurde, Sunil S</creatorcontrib><creatorcontrib>Thompson, Ethan</creatorcontrib><creatorcontrib>Yaduru, Shasidhar</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Fountain, Jake C</creatorcontrib><creatorcontrib>Chu, Ye</creatorcontrib><creatorcontrib>Ozias-Akins, Peggy</creatorcontrib><creatorcontrib>Isleib, Thomas G</creatorcontrib><creatorcontrib>Holbrook, Corley</creatorcontrib><creatorcontrib>Dutta, Bhabesh</creatorcontrib><creatorcontrib>Culbreath, Albert K</creatorcontrib><creatorcontrib>Pandey, Manish K</creatorcontrib><creatorcontrib>Guo, Baozhu</creatorcontrib><title>Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping</title><title>Phytopathology</title><addtitle>Phytopathology</addtitle><description>Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut ( ) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping population has been genotyped with the peanut 58K single-nucleotide polymorphism (SNP) array and phenotyped for LLS severity in the field for 3 years. Joint linkage-based quantitative trait locus (QTL) mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained up to 47.7%. A genome-wide association study identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 to 1,520 kb (184 kb) on chromosome B02 and from 1,026.9 to 1,793.2 kb (767 kb) on chromosome B03, designated as peanut LLS resistance loci, -1 and -2, respectively. -1 contains 10 nucleotide-binding site leucine-rich repeat disease resistance genes. A nucleotide-binding site leucine-rich repeat disease resistance gene, , was also identified on homoeologous chromosome A02. -2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat, acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as nested association mapping for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.</description><subject>1,3-beta-glucan synthase</subject><subject>Arachis - genetics</subject><subject>Arachis - immunology</subject><subject>Arachis - microbiology</subject><subject>Arachis hypogaea</subject><subject>Ascomycota - genetics</subject><subject>Ascomycota - physiology</subject><subject>Chromosome Mapping</subject><subject>chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Genetic Linkage</subject><subject>Genetic Markers - genetics</subject><subject>genetic recombination</subject><subject>Genome-Wide Association Study</subject><subject>genomics</subject><subject>Genotype</subject><subject>genotyping</subject><subject>Greece</subject><subject>leaf spot</subject><subject>peanuts</subject><subject>Phenotype</subject><subject>phenotypic variation</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - microbiology</subject><subject>pollen</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>resistance genes</subject><subject>single nucleotide polymorphism</subject><issn>0031-949X</issn><issn>1943-7684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctu1DAUtRCIDoUfYIG8ZFGXa_vm4WVVQVsp0NHMVMDKcuKbyjDjhDgR6tfwq820A2LX1X3ovKTD2FsJpxIMflheft9cC0ChtACJWqyesYU081LkJT5nCwAthUHz7Yi9SukHABRllr9kR7rMc4M5LtifKsSf7pb4Z9f3Id5yFz2_oNjtSHwNnvhZSl0T3Bi6yNfj5O_4lac4hjaQ55vfHV-Si9PIKzcSr8i1fN13I19RCml0sZmfM_-EL6tqveJCPhgcDnXCb9Le9AulcZb73-uQ5zV70bptojeHecxuPn3cnF-K6vri6vysEo3KYBRFgZDVskbXeEN53ejCgdN1C6jAKEOqVk6Ch1qiccU8faM9Oihbalss9DF7_6jbD92vaY5jdyE1tN26SN2UrJaZznPUCp-GAhYmU6Upn4Qqg0oCYLmHqkdoM3QpDdTafgg7N9xZCXZft32o2wJape2-bruaSe8O-lO9I_-P8rdffQ9dNaVa</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Gangurde, Sunil S</creator><creator>Thompson, Ethan</creator><creator>Yaduru, Shasidhar</creator><creator>Wang, Hui</creator><creator>Fountain, Jake C</creator><creator>Chu, Ye</creator><creator>Ozias-Akins, Peggy</creator><creator>Isleib, Thomas G</creator><creator>Holbrook, Corley</creator><creator>Dutta, Bhabesh</creator><creator>Culbreath, Albert K</creator><creator>Pandey, Manish K</creator><creator>Guo, Baozhu</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9841-257X</orcidid><orcidid>https://orcid.org/0000-0002-8520-578X</orcidid><orcidid>https://orcid.org/0000-0002-9079-7126</orcidid></search><sort><creationdate>202406</creationdate><title>Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping</title><author>Gangurde, Sunil S ; Thompson, Ethan ; Yaduru, Shasidhar ; Wang, Hui ; Fountain, Jake C ; Chu, Ye ; Ozias-Akins, Peggy ; Isleib, Thomas G ; Holbrook, Corley ; Dutta, Bhabesh ; Culbreath, Albert K ; Pandey, Manish K ; Guo, Baozhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-77405b1b4acd9e6bc37a0a3bf0420929e2b2a10d0b149a7d0bdc3d4a08feff473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1,3-beta-glucan synthase</topic><topic>Arachis - genetics</topic><topic>Arachis - immunology</topic><topic>Arachis - microbiology</topic><topic>Arachis hypogaea</topic><topic>Ascomycota - genetics</topic><topic>Ascomycota - physiology</topic><topic>Chromosome Mapping</topic><topic>chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Genetic Linkage</topic><topic>Genetic Markers - genetics</topic><topic>genetic recombination</topic><topic>Genome-Wide Association Study</topic><topic>genomics</topic><topic>Genotype</topic><topic>genotyping</topic><topic>Greece</topic><topic>leaf spot</topic><topic>peanuts</topic><topic>Phenotype</topic><topic>phenotypic variation</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - microbiology</topic><topic>pollen</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>resistance genes</topic><topic>single nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gangurde, Sunil S</creatorcontrib><creatorcontrib>Thompson, Ethan</creatorcontrib><creatorcontrib>Yaduru, Shasidhar</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Fountain, Jake C</creatorcontrib><creatorcontrib>Chu, Ye</creatorcontrib><creatorcontrib>Ozias-Akins, Peggy</creatorcontrib><creatorcontrib>Isleib, Thomas G</creatorcontrib><creatorcontrib>Holbrook, Corley</creatorcontrib><creatorcontrib>Dutta, Bhabesh</creatorcontrib><creatorcontrib>Culbreath, Albert K</creatorcontrib><creatorcontrib>Pandey, Manish K</creatorcontrib><creatorcontrib>Guo, Baozhu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Phytopathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gangurde, Sunil S</au><au>Thompson, Ethan</au><au>Yaduru, Shasidhar</au><au>Wang, Hui</au><au>Fountain, Jake C</au><au>Chu, Ye</au><au>Ozias-Akins, Peggy</au><au>Isleib, Thomas G</au><au>Holbrook, Corley</au><au>Dutta, Bhabesh</au><au>Culbreath, Albert K</au><au>Pandey, Manish K</au><au>Guo, Baozhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping</atitle><jtitle>Phytopathology</jtitle><addtitle>Phytopathology</addtitle><date>2024-06</date><risdate>2024</risdate><volume>114</volume><issue>6</issue><spage>1346</spage><epage>1355</epage><pages>1346-1355</pages><issn>0031-949X</issn><eissn>1943-7684</eissn><abstract>Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut ( ) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping population has been genotyped with the peanut 58K single-nucleotide polymorphism (SNP) array and phenotyped for LLS severity in the field for 3 years. Joint linkage-based quantitative trait locus (QTL) mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained up to 47.7%. A genome-wide association study identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 to 1,520 kb (184 kb) on chromosome B02 and from 1,026.9 to 1,793.2 kb (767 kb) on chromosome B03, designated as peanut LLS resistance loci, -1 and -2, respectively. -1 contains 10 nucleotide-binding site leucine-rich repeat disease resistance genes. A nucleotide-binding site leucine-rich repeat disease resistance gene, , was also identified on homoeologous chromosome A02. -2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat, acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as nested association mapping for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.</abstract><cop>United States</cop><pmid>38669464</pmid><doi>10.1094/PHYTO-04-23-0143-R</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9841-257X</orcidid><orcidid>https://orcid.org/0000-0002-8520-578X</orcidid><orcidid>https://orcid.org/0000-0002-9079-7126</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-949X
ispartof Phytopathology, 2024-06, Vol.114 (6), p.1346-1355
issn 0031-949X
1943-7684
language eng
recordid cdi_proquest_miscellaneous_3153664324
source MEDLINE; Alma/SFX Local Collection
subjects 1,3-beta-glucan synthase
Arachis - genetics
Arachis - immunology
Arachis - microbiology
Arachis hypogaea
Ascomycota - genetics
Ascomycota - physiology
Chromosome Mapping
chromosomes
Chromosomes, Plant - genetics
disease resistance
Disease Resistance - genetics
Genetic Linkage
Genetic Markers - genetics
genetic recombination
Genome-Wide Association Study
genomics
Genotype
genotyping
Greece
leaf spot
peanuts
Phenotype
phenotypic variation
Plant Diseases - genetics
Plant Diseases - immunology
Plant Diseases - microbiology
Plant Leaves - genetics
Plant Leaves - microbiology
pollen
Polymorphism, Single Nucleotide - genetics
quantitative trait loci
Quantitative Trait Loci - genetics
resistance genes
single nucleotide polymorphism
title Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR -1 and PLLSR -2, Using Nested Association Mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linkage%20Mapping%20and%20Genome-Wide%20Association%20Study%20Identified%20Two%20Peanut%20Late%20Leaf%20Spot%20Resistance%20Loci,%20PLLSR%20-1%20and%20PLLSR%20-2,%20Using%20Nested%20Association%20Mapping&rft.jtitle=Phytopathology&rft.au=Gangurde,%20Sunil%20S&rft.date=2024-06&rft.volume=114&rft.issue=6&rft.spage=1346&rft.epage=1355&rft.pages=1346-1355&rft.issn=0031-949X&rft.eissn=1943-7684&rft_id=info:doi/10.1094/PHYTO-04-23-0143-R&rft_dat=%3Cproquest_cross%3E3153664324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2942100488&rft_id=info:pmid/38669464&rfr_iscdi=true