Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes
Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatm...
Gespeichert in:
Veröffentlicht in: | Food and bioprocess technology 2024-07, Vol.17 (7), p.1752-1764 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1764 |
---|---|
container_issue | 7 |
container_start_page | 1752 |
container_title | Food and bioprocess technology |
container_volume | 17 |
creator | de Mello Capetti, Caio Cesar de Oliveira Arnoldi Pellegrini, Vanessa Vacilotto, Milena Moreira da Silva Curvelo, Antonio Aprigio Falvo, Maurício Guimaraes, Francisco Eduardo Gontijo Ontañon, Ornella M. Campos, Eleonora Polikarpov, Igor |
description | Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatment strategies (alkali and hydrothermal) and three different enzymes were applied for enzymatic XOS production from sugarcane bagasse. The enzymatic hydrolysis was performed with nine different combinations of recombinant endo-xylanases from GH11 and GH10 families and GH11 xylobiohydrolase. Hydrothermal pretreatment followed by optimized enzymatic hydrolysis yielded up to 96 ± 1 mg of XOS per gram of initial biomass, whereas enzymatic hydrolysis of alkali-pretreated sugarcane bagasse rendered around 47.6 ± 0.2 mg/g. For both alkali and hydrothermal routes, the maximum yields of short-length XOS were obtained using the GH10 xylanase alone. Furthermore, differences in XOS profiles obtained by controlled mixtures of the enzymes have been evaluated. For both routes, the best yields of short-length XOS were obtained using the GH10 xylanase alone, which is consistent with the notion that sugarcane xylan substitutions partially hinder GH11 xylanase activity. The results presented here show that a green and cost-effective hydrothermal pretreatment path for xylooligosaccharides production, rendered considerably better XOS yields. |
doi_str_mv | 10.1007/s11947-023-03226-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153664201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072087901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-830f149a2e1b9f89767b00a5ab08ac3ac72166a268bf6ff9f7238caaa5d566083</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEEqXwBzhZ4sIldGxv7ORYloVWqkRVqMTNmjh26uLYxU6Qlr_En8S7QSBx4DTWzPeenvWq6iWFNxRAnmVKu42sgfEaOGOilo-qE9rxpm7opnv8583hafUs53sAARvKT6qfu-_oF5xdDCRacrEfUpzvTJrQEwwDOfdf0btgyHUyczI4TybM5CYus8nExkS-7H2M3o0xo9Z3mNxQDtcpDos-mtoUJ_JpGTGRLRaftzhizobcZhdG8s5Za9LBchun3oVjkHxIcmP0uim3Xfixn0x-Xj2x6LN58XueVrfvd5-3F_XVxw-X2_OrWnPgc91ysOXTyAztO9t2UsgeABvsoUXNUUtGhUAm2t4KazsrGW81IjZDIwS0_LR6vfo-pPhtMXlWk8vaeF_yxyUrThsuxIYBLeirf9D7uKRQ0ikOkkEruyPFVkqnmHMyVj0kN2HaKwrq0J9a-1OlP3XsT8ki4qsoFziMJv21_o_qF8v0oUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072087901</pqid></control><display><type>article</type><title>Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes</title><source>Springer Nature - Complete Springer Journals</source><creator>de Mello Capetti, Caio Cesar ; de Oliveira Arnoldi Pellegrini, Vanessa ; Vacilotto, Milena Moreira ; da Silva Curvelo, Antonio Aprigio ; Falvo, Maurício ; Guimaraes, Francisco Eduardo Gontijo ; Ontañon, Ornella M. ; Campos, Eleonora ; Polikarpov, Igor</creator><creatorcontrib>de Mello Capetti, Caio Cesar ; de Oliveira Arnoldi Pellegrini, Vanessa ; Vacilotto, Milena Moreira ; da Silva Curvelo, Antonio Aprigio ; Falvo, Maurício ; Guimaraes, Francisco Eduardo Gontijo ; Ontañon, Ornella M. ; Campos, Eleonora ; Polikarpov, Igor</creatorcontrib><description>Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatment strategies (alkali and hydrothermal) and three different enzymes were applied for enzymatic XOS production from sugarcane bagasse. The enzymatic hydrolysis was performed with nine different combinations of recombinant endo-xylanases from GH11 and GH10 families and GH11 xylobiohydrolase. Hydrothermal pretreatment followed by optimized enzymatic hydrolysis yielded up to 96 ± 1 mg of XOS per gram of initial biomass, whereas enzymatic hydrolysis of alkali-pretreated sugarcane bagasse rendered around 47.6 ± 0.2 mg/g. For both alkali and hydrothermal routes, the maximum yields of short-length XOS were obtained using the GH10 xylanase alone. Furthermore, differences in XOS profiles obtained by controlled mixtures of the enzymes have been evaluated. For both routes, the best yields of short-length XOS were obtained using the GH10 xylanase alone, which is consistent with the notion that sugarcane xylan substitutions partially hinder GH11 xylanase activity. The results presented here show that a green and cost-effective hydrothermal pretreatment path for xylooligosaccharides production, rendered considerably better XOS yields.</description><identifier>ISSN: 1935-5130</identifier><identifier>EISSN: 1935-5149</identifier><identifier>DOI: 10.1007/s11947-023-03226-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; alkali treatment ; Animal health ; antioxidants ; Bagasse ; Biomass ; bioprocessing ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; cost effectiveness ; endo-1,4-beta-xylanase ; enzymatic hydrolysis ; Enzymes ; Food Science ; Hemicellulose ; Hydrolysis ; Hydrothermal pretreatment ; Lignocellulose ; prebiotics ; Sugarcane ; sugarcane bagasse ; Xylan ; Xylanase ; xylooligosaccharides</subject><ispartof>Food and bioprocess technology, 2024-07, Vol.17 (7), p.1752-1764</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-830f149a2e1b9f89767b00a5ab08ac3ac72166a268bf6ff9f7238caaa5d566083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11947-023-03226-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11947-023-03226-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>de Mello Capetti, Caio Cesar</creatorcontrib><creatorcontrib>de Oliveira Arnoldi Pellegrini, Vanessa</creatorcontrib><creatorcontrib>Vacilotto, Milena Moreira</creatorcontrib><creatorcontrib>da Silva Curvelo, Antonio Aprigio</creatorcontrib><creatorcontrib>Falvo, Maurício</creatorcontrib><creatorcontrib>Guimaraes, Francisco Eduardo Gontijo</creatorcontrib><creatorcontrib>Ontañon, Ornella M.</creatorcontrib><creatorcontrib>Campos, Eleonora</creatorcontrib><creatorcontrib>Polikarpov, Igor</creatorcontrib><title>Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes</title><title>Food and bioprocess technology</title><addtitle>Food Bioprocess Technol</addtitle><description>Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatment strategies (alkali and hydrothermal) and three different enzymes were applied for enzymatic XOS production from sugarcane bagasse. The enzymatic hydrolysis was performed with nine different combinations of recombinant endo-xylanases from GH11 and GH10 families and GH11 xylobiohydrolase. Hydrothermal pretreatment followed by optimized enzymatic hydrolysis yielded up to 96 ± 1 mg of XOS per gram of initial biomass, whereas enzymatic hydrolysis of alkali-pretreated sugarcane bagasse rendered around 47.6 ± 0.2 mg/g. For both alkali and hydrothermal routes, the maximum yields of short-length XOS were obtained using the GH10 xylanase alone. Furthermore, differences in XOS profiles obtained by controlled mixtures of the enzymes have been evaluated. For both routes, the best yields of short-length XOS were obtained using the GH10 xylanase alone, which is consistent with the notion that sugarcane xylan substitutions partially hinder GH11 xylanase activity. The results presented here show that a green and cost-effective hydrothermal pretreatment path for xylooligosaccharides production, rendered considerably better XOS yields.</description><subject>Agriculture</subject><subject>alkali treatment</subject><subject>Animal health</subject><subject>antioxidants</subject><subject>Bagasse</subject><subject>Biomass</subject><subject>bioprocessing</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>cost effectiveness</subject><subject>endo-1,4-beta-xylanase</subject><subject>enzymatic hydrolysis</subject><subject>Enzymes</subject><subject>Food Science</subject><subject>Hemicellulose</subject><subject>Hydrolysis</subject><subject>Hydrothermal pretreatment</subject><subject>Lignocellulose</subject><subject>prebiotics</subject><subject>Sugarcane</subject><subject>sugarcane bagasse</subject><subject>Xylan</subject><subject>Xylanase</subject><subject>xylooligosaccharides</subject><issn>1935-5130</issn><issn>1935-5149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhSMEEqXwBzhZ4sIldGxv7ORYloVWqkRVqMTNmjh26uLYxU6Qlr_En8S7QSBx4DTWzPeenvWq6iWFNxRAnmVKu42sgfEaOGOilo-qE9rxpm7opnv8583hafUs53sAARvKT6qfu-_oF5xdDCRacrEfUpzvTJrQEwwDOfdf0btgyHUyczI4TybM5CYus8nExkS-7H2M3o0xo9Z3mNxQDtcpDos-mtoUJ_JpGTGRLRaftzhizobcZhdG8s5Za9LBchun3oVjkHxIcmP0uim3Xfixn0x-Xj2x6LN58XueVrfvd5-3F_XVxw-X2_OrWnPgc91ysOXTyAztO9t2UsgeABvsoUXNUUtGhUAm2t4KazsrGW81IjZDIwS0_LR6vfo-pPhtMXlWk8vaeF_yxyUrThsuxIYBLeirf9D7uKRQ0ikOkkEruyPFVkqnmHMyVj0kN2HaKwrq0J9a-1OlP3XsT8ki4qsoFziMJv21_o_qF8v0oUs</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>de Mello Capetti, Caio Cesar</creator><creator>de Oliveira Arnoldi Pellegrini, Vanessa</creator><creator>Vacilotto, Milena Moreira</creator><creator>da Silva Curvelo, Antonio Aprigio</creator><creator>Falvo, Maurício</creator><creator>Guimaraes, Francisco Eduardo Gontijo</creator><creator>Ontañon, Ornella M.</creator><creator>Campos, Eleonora</creator><creator>Polikarpov, Igor</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240701</creationdate><title>Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes</title><author>de Mello Capetti, Caio Cesar ; de Oliveira Arnoldi Pellegrini, Vanessa ; Vacilotto, Milena Moreira ; da Silva Curvelo, Antonio Aprigio ; Falvo, Maurício ; Guimaraes, Francisco Eduardo Gontijo ; Ontañon, Ornella M. ; Campos, Eleonora ; Polikarpov, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-830f149a2e1b9f89767b00a5ab08ac3ac72166a268bf6ff9f7238caaa5d566083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>alkali treatment</topic><topic>Animal health</topic><topic>antioxidants</topic><topic>Bagasse</topic><topic>Biomass</topic><topic>bioprocessing</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>cost effectiveness</topic><topic>endo-1,4-beta-xylanase</topic><topic>enzymatic hydrolysis</topic><topic>Enzymes</topic><topic>Food Science</topic><topic>Hemicellulose</topic><topic>Hydrolysis</topic><topic>Hydrothermal pretreatment</topic><topic>Lignocellulose</topic><topic>prebiotics</topic><topic>Sugarcane</topic><topic>sugarcane bagasse</topic><topic>Xylan</topic><topic>Xylanase</topic><topic>xylooligosaccharides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Mello Capetti, Caio Cesar</creatorcontrib><creatorcontrib>de Oliveira Arnoldi Pellegrini, Vanessa</creatorcontrib><creatorcontrib>Vacilotto, Milena Moreira</creatorcontrib><creatorcontrib>da Silva Curvelo, Antonio Aprigio</creatorcontrib><creatorcontrib>Falvo, Maurício</creatorcontrib><creatorcontrib>Guimaraes, Francisco Eduardo Gontijo</creatorcontrib><creatorcontrib>Ontañon, Ornella M.</creatorcontrib><creatorcontrib>Campos, Eleonora</creatorcontrib><creatorcontrib>Polikarpov, Igor</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Food and bioprocess technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Mello Capetti, Caio Cesar</au><au>de Oliveira Arnoldi Pellegrini, Vanessa</au><au>Vacilotto, Milena Moreira</au><au>da Silva Curvelo, Antonio Aprigio</au><au>Falvo, Maurício</au><au>Guimaraes, Francisco Eduardo Gontijo</au><au>Ontañon, Ornella M.</au><au>Campos, Eleonora</au><au>Polikarpov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes</atitle><jtitle>Food and bioprocess technology</jtitle><stitle>Food Bioprocess Technol</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>17</volume><issue>7</issue><spage>1752</spage><epage>1764</epage><pages>1752-1764</pages><issn>1935-5130</issn><eissn>1935-5149</eissn><abstract>Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatment strategies (alkali and hydrothermal) and three different enzymes were applied for enzymatic XOS production from sugarcane bagasse. The enzymatic hydrolysis was performed with nine different combinations of recombinant endo-xylanases from GH11 and GH10 families and GH11 xylobiohydrolase. Hydrothermal pretreatment followed by optimized enzymatic hydrolysis yielded up to 96 ± 1 mg of XOS per gram of initial biomass, whereas enzymatic hydrolysis of alkali-pretreated sugarcane bagasse rendered around 47.6 ± 0.2 mg/g. For both alkali and hydrothermal routes, the maximum yields of short-length XOS were obtained using the GH10 xylanase alone. Furthermore, differences in XOS profiles obtained by controlled mixtures of the enzymes have been evaluated. For both routes, the best yields of short-length XOS were obtained using the GH10 xylanase alone, which is consistent with the notion that sugarcane xylan substitutions partially hinder GH11 xylanase activity. The results presented here show that a green and cost-effective hydrothermal pretreatment path for xylooligosaccharides production, rendered considerably better XOS yields.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11947-023-03226-7</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-5130 |
ispartof | Food and bioprocess technology, 2024-07, Vol.17 (7), p.1752-1764 |
issn | 1935-5130 1935-5149 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153664201 |
source | Springer Nature - Complete Springer Journals |
subjects | Agriculture alkali treatment Animal health antioxidants Bagasse Biomass bioprocessing Biotechnology Chemistry Chemistry and Materials Science Chemistry/Food Science cost effectiveness endo-1,4-beta-xylanase enzymatic hydrolysis Enzymes Food Science Hemicellulose Hydrolysis Hydrothermal pretreatment Lignocellulose prebiotics Sugarcane sugarcane bagasse Xylan Xylanase xylooligosaccharides |
title | Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Hydrothermal%20and%20Alkaline%20Pretreatment%20Routes%20for%20Xylooligosaccharides%20Production%20from%20Sugar%20Cane%20Bagasse%20Using%20Different%20Combinations%20of%20Recombinant%20Enzymes&rft.jtitle=Food%20and%20bioprocess%20technology&rft.au=de%20Mello%20Capetti,%20Caio%20Cesar&rft.date=2024-07-01&rft.volume=17&rft.issue=7&rft.spage=1752&rft.epage=1764&rft.pages=1752-1764&rft.issn=1935-5130&rft.eissn=1935-5149&rft_id=info:doi/10.1007/s11947-023-03226-7&rft_dat=%3Cproquest_cross%3E3072087901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072087901&rft_id=info:pmid/&rfr_iscdi=true |