Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes

Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food and bioprocess technology 2024-07, Vol.17 (7), p.1752-1764
Hauptverfasser: de Mello Capetti, Caio Cesar, de Oliveira Arnoldi Pellegrini, Vanessa, Vacilotto, Milena Moreira, da Silva Curvelo, Antonio Aprigio, Falvo, Maurício, Guimaraes, Francisco Eduardo Gontijo, Ontañon, Ornella M., Campos, Eleonora, Polikarpov, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1764
container_issue 7
container_start_page 1752
container_title Food and bioprocess technology
container_volume 17
creator de Mello Capetti, Caio Cesar
de Oliveira Arnoldi Pellegrini, Vanessa
Vacilotto, Milena Moreira
da Silva Curvelo, Antonio Aprigio
Falvo, Maurício
Guimaraes, Francisco Eduardo Gontijo
Ontañon, Ornella M.
Campos, Eleonora
Polikarpov, Igor
description Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatment strategies (alkali and hydrothermal) and three different enzymes were applied for enzymatic XOS production from sugarcane bagasse. The enzymatic hydrolysis was performed with nine different combinations of recombinant endo-xylanases from GH11 and GH10 families and GH11 xylobiohydrolase. Hydrothermal pretreatment followed by optimized enzymatic hydrolysis yielded up to 96 ± 1 mg of XOS per gram of initial biomass, whereas enzymatic hydrolysis of alkali-pretreated sugarcane bagasse rendered around 47.6 ± 0.2 mg/g. For both alkali and hydrothermal routes, the maximum yields of short-length XOS were obtained using the GH10 xylanase alone. Furthermore, differences in XOS profiles obtained by controlled mixtures of the enzymes have been evaluated. For both routes, the best yields of short-length XOS were obtained using the GH10 xylanase alone, which is consistent with the notion that sugarcane xylan substitutions partially hinder GH11 xylanase activity. The results presented here show that a green and cost-effective hydrothermal pretreatment path for xylooligosaccharides production, rendered considerably better XOS yields.
doi_str_mv 10.1007/s11947-023-03226-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153664201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072087901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-830f149a2e1b9f89767b00a5ab08ac3ac72166a268bf6ff9f7238caaa5d566083</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEEqXwBzhZ4sIldGxv7ORYloVWqkRVqMTNmjh26uLYxU6Qlr_En8S7QSBx4DTWzPeenvWq6iWFNxRAnmVKu42sgfEaOGOilo-qE9rxpm7opnv8583hafUs53sAARvKT6qfu-_oF5xdDCRacrEfUpzvTJrQEwwDOfdf0btgyHUyczI4TybM5CYus8nExkS-7H2M3o0xo9Z3mNxQDtcpDos-mtoUJ_JpGTGRLRaftzhizobcZhdG8s5Za9LBchun3oVjkHxIcmP0uim3Xfixn0x-Xj2x6LN58XueVrfvd5-3F_XVxw-X2_OrWnPgc91ysOXTyAztO9t2UsgeABvsoUXNUUtGhUAm2t4KazsrGW81IjZDIwS0_LR6vfo-pPhtMXlWk8vaeF_yxyUrThsuxIYBLeirf9D7uKRQ0ikOkkEruyPFVkqnmHMyVj0kN2HaKwrq0J9a-1OlP3XsT8ki4qsoFziMJv21_o_qF8v0oUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072087901</pqid></control><display><type>article</type><title>Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes</title><source>Springer Nature - Complete Springer Journals</source><creator>de Mello Capetti, Caio Cesar ; de Oliveira Arnoldi Pellegrini, Vanessa ; Vacilotto, Milena Moreira ; da Silva Curvelo, Antonio Aprigio ; Falvo, Maurício ; Guimaraes, Francisco Eduardo Gontijo ; Ontañon, Ornella M. ; Campos, Eleonora ; Polikarpov, Igor</creator><creatorcontrib>de Mello Capetti, Caio Cesar ; de Oliveira Arnoldi Pellegrini, Vanessa ; Vacilotto, Milena Moreira ; da Silva Curvelo, Antonio Aprigio ; Falvo, Maurício ; Guimaraes, Francisco Eduardo Gontijo ; Ontañon, Ornella M. ; Campos, Eleonora ; Polikarpov, Igor</creatorcontrib><description>Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatment strategies (alkali and hydrothermal) and three different enzymes were applied for enzymatic XOS production from sugarcane bagasse. The enzymatic hydrolysis was performed with nine different combinations of recombinant endo-xylanases from GH11 and GH10 families and GH11 xylobiohydrolase. Hydrothermal pretreatment followed by optimized enzymatic hydrolysis yielded up to 96 ± 1 mg of XOS per gram of initial biomass, whereas enzymatic hydrolysis of alkali-pretreated sugarcane bagasse rendered around 47.6 ± 0.2 mg/g. For both alkali and hydrothermal routes, the maximum yields of short-length XOS were obtained using the GH10 xylanase alone. Furthermore, differences in XOS profiles obtained by controlled mixtures of the enzymes have been evaluated. For both routes, the best yields of short-length XOS were obtained using the GH10 xylanase alone, which is consistent with the notion that sugarcane xylan substitutions partially hinder GH11 xylanase activity. The results presented here show that a green and cost-effective hydrothermal pretreatment path for xylooligosaccharides production, rendered considerably better XOS yields.</description><identifier>ISSN: 1935-5130</identifier><identifier>EISSN: 1935-5149</identifier><identifier>DOI: 10.1007/s11947-023-03226-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; alkali treatment ; Animal health ; antioxidants ; Bagasse ; Biomass ; bioprocessing ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; cost effectiveness ; endo-1,4-beta-xylanase ; enzymatic hydrolysis ; Enzymes ; Food Science ; Hemicellulose ; Hydrolysis ; Hydrothermal pretreatment ; Lignocellulose ; prebiotics ; Sugarcane ; sugarcane bagasse ; Xylan ; Xylanase ; xylooligosaccharides</subject><ispartof>Food and bioprocess technology, 2024-07, Vol.17 (7), p.1752-1764</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-830f149a2e1b9f89767b00a5ab08ac3ac72166a268bf6ff9f7238caaa5d566083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11947-023-03226-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11947-023-03226-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>de Mello Capetti, Caio Cesar</creatorcontrib><creatorcontrib>de Oliveira Arnoldi Pellegrini, Vanessa</creatorcontrib><creatorcontrib>Vacilotto, Milena Moreira</creatorcontrib><creatorcontrib>da Silva Curvelo, Antonio Aprigio</creatorcontrib><creatorcontrib>Falvo, Maurício</creatorcontrib><creatorcontrib>Guimaraes, Francisco Eduardo Gontijo</creatorcontrib><creatorcontrib>Ontañon, Ornella M.</creatorcontrib><creatorcontrib>Campos, Eleonora</creatorcontrib><creatorcontrib>Polikarpov, Igor</creatorcontrib><title>Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes</title><title>Food and bioprocess technology</title><addtitle>Food Bioprocess Technol</addtitle><description>Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatment strategies (alkali and hydrothermal) and three different enzymes were applied for enzymatic XOS production from sugarcane bagasse. The enzymatic hydrolysis was performed with nine different combinations of recombinant endo-xylanases from GH11 and GH10 families and GH11 xylobiohydrolase. Hydrothermal pretreatment followed by optimized enzymatic hydrolysis yielded up to 96 ± 1 mg of XOS per gram of initial biomass, whereas enzymatic hydrolysis of alkali-pretreated sugarcane bagasse rendered around 47.6 ± 0.2 mg/g. For both alkali and hydrothermal routes, the maximum yields of short-length XOS were obtained using the GH10 xylanase alone. Furthermore, differences in XOS profiles obtained by controlled mixtures of the enzymes have been evaluated. For both routes, the best yields of short-length XOS were obtained using the GH10 xylanase alone, which is consistent with the notion that sugarcane xylan substitutions partially hinder GH11 xylanase activity. The results presented here show that a green and cost-effective hydrothermal pretreatment path for xylooligosaccharides production, rendered considerably better XOS yields.</description><subject>Agriculture</subject><subject>alkali treatment</subject><subject>Animal health</subject><subject>antioxidants</subject><subject>Bagasse</subject><subject>Biomass</subject><subject>bioprocessing</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>cost effectiveness</subject><subject>endo-1,4-beta-xylanase</subject><subject>enzymatic hydrolysis</subject><subject>Enzymes</subject><subject>Food Science</subject><subject>Hemicellulose</subject><subject>Hydrolysis</subject><subject>Hydrothermal pretreatment</subject><subject>Lignocellulose</subject><subject>prebiotics</subject><subject>Sugarcane</subject><subject>sugarcane bagasse</subject><subject>Xylan</subject><subject>Xylanase</subject><subject>xylooligosaccharides</subject><issn>1935-5130</issn><issn>1935-5149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhSMEEqXwBzhZ4sIldGxv7ORYloVWqkRVqMTNmjh26uLYxU6Qlr_En8S7QSBx4DTWzPeenvWq6iWFNxRAnmVKu42sgfEaOGOilo-qE9rxpm7opnv8583hafUs53sAARvKT6qfu-_oF5xdDCRacrEfUpzvTJrQEwwDOfdf0btgyHUyczI4TybM5CYus8nExkS-7H2M3o0xo9Z3mNxQDtcpDos-mtoUJ_JpGTGRLRaftzhizobcZhdG8s5Za9LBchun3oVjkHxIcmP0uim3Xfixn0x-Xj2x6LN58XueVrfvd5-3F_XVxw-X2_OrWnPgc91ysOXTyAztO9t2UsgeABvsoUXNUUtGhUAm2t4KazsrGW81IjZDIwS0_LR6vfo-pPhtMXlWk8vaeF_yxyUrThsuxIYBLeirf9D7uKRQ0ikOkkEruyPFVkqnmHMyVj0kN2HaKwrq0J9a-1OlP3XsT8ki4qsoFziMJv21_o_qF8v0oUs</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>de Mello Capetti, Caio Cesar</creator><creator>de Oliveira Arnoldi Pellegrini, Vanessa</creator><creator>Vacilotto, Milena Moreira</creator><creator>da Silva Curvelo, Antonio Aprigio</creator><creator>Falvo, Maurício</creator><creator>Guimaraes, Francisco Eduardo Gontijo</creator><creator>Ontañon, Ornella M.</creator><creator>Campos, Eleonora</creator><creator>Polikarpov, Igor</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240701</creationdate><title>Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes</title><author>de Mello Capetti, Caio Cesar ; de Oliveira Arnoldi Pellegrini, Vanessa ; Vacilotto, Milena Moreira ; da Silva Curvelo, Antonio Aprigio ; Falvo, Maurício ; Guimaraes, Francisco Eduardo Gontijo ; Ontañon, Ornella M. ; Campos, Eleonora ; Polikarpov, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-830f149a2e1b9f89767b00a5ab08ac3ac72166a268bf6ff9f7238caaa5d566083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>alkali treatment</topic><topic>Animal health</topic><topic>antioxidants</topic><topic>Bagasse</topic><topic>Biomass</topic><topic>bioprocessing</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>cost effectiveness</topic><topic>endo-1,4-beta-xylanase</topic><topic>enzymatic hydrolysis</topic><topic>Enzymes</topic><topic>Food Science</topic><topic>Hemicellulose</topic><topic>Hydrolysis</topic><topic>Hydrothermal pretreatment</topic><topic>Lignocellulose</topic><topic>prebiotics</topic><topic>Sugarcane</topic><topic>sugarcane bagasse</topic><topic>Xylan</topic><topic>Xylanase</topic><topic>xylooligosaccharides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Mello Capetti, Caio Cesar</creatorcontrib><creatorcontrib>de Oliveira Arnoldi Pellegrini, Vanessa</creatorcontrib><creatorcontrib>Vacilotto, Milena Moreira</creatorcontrib><creatorcontrib>da Silva Curvelo, Antonio Aprigio</creatorcontrib><creatorcontrib>Falvo, Maurício</creatorcontrib><creatorcontrib>Guimaraes, Francisco Eduardo Gontijo</creatorcontrib><creatorcontrib>Ontañon, Ornella M.</creatorcontrib><creatorcontrib>Campos, Eleonora</creatorcontrib><creatorcontrib>Polikarpov, Igor</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Food and bioprocess technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Mello Capetti, Caio Cesar</au><au>de Oliveira Arnoldi Pellegrini, Vanessa</au><au>Vacilotto, Milena Moreira</au><au>da Silva Curvelo, Antonio Aprigio</au><au>Falvo, Maurício</au><au>Guimaraes, Francisco Eduardo Gontijo</au><au>Ontañon, Ornella M.</au><au>Campos, Eleonora</au><au>Polikarpov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes</atitle><jtitle>Food and bioprocess technology</jtitle><stitle>Food Bioprocess Technol</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>17</volume><issue>7</issue><spage>1752</spage><epage>1764</epage><pages>1752-1764</pages><issn>1935-5130</issn><eissn>1935-5149</eissn><abstract>Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatment strategies (alkali and hydrothermal) and three different enzymes were applied for enzymatic XOS production from sugarcane bagasse. The enzymatic hydrolysis was performed with nine different combinations of recombinant endo-xylanases from GH11 and GH10 families and GH11 xylobiohydrolase. Hydrothermal pretreatment followed by optimized enzymatic hydrolysis yielded up to 96 ± 1 mg of XOS per gram of initial biomass, whereas enzymatic hydrolysis of alkali-pretreated sugarcane bagasse rendered around 47.6 ± 0.2 mg/g. For both alkali and hydrothermal routes, the maximum yields of short-length XOS were obtained using the GH10 xylanase alone. Furthermore, differences in XOS profiles obtained by controlled mixtures of the enzymes have been evaluated. For both routes, the best yields of short-length XOS were obtained using the GH10 xylanase alone, which is consistent with the notion that sugarcane xylan substitutions partially hinder GH11 xylanase activity. The results presented here show that a green and cost-effective hydrothermal pretreatment path for xylooligosaccharides production, rendered considerably better XOS yields.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11947-023-03226-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1935-5130
ispartof Food and bioprocess technology, 2024-07, Vol.17 (7), p.1752-1764
issn 1935-5130
1935-5149
language eng
recordid cdi_proquest_miscellaneous_3153664201
source Springer Nature - Complete Springer Journals
subjects Agriculture
alkali treatment
Animal health
antioxidants
Bagasse
Biomass
bioprocessing
Biotechnology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
cost effectiveness
endo-1,4-beta-xylanase
enzymatic hydrolysis
Enzymes
Food Science
Hemicellulose
Hydrolysis
Hydrothermal pretreatment
Lignocellulose
prebiotics
Sugarcane
sugarcane bagasse
Xylan
Xylanase
xylooligosaccharides
title Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Hydrothermal%20and%20Alkaline%20Pretreatment%20Routes%20for%20Xylooligosaccharides%20Production%20from%20Sugar%20Cane%20Bagasse%20Using%20Different%20Combinations%20of%20Recombinant%20Enzymes&rft.jtitle=Food%20and%20bioprocess%20technology&rft.au=de%20Mello%20Capetti,%20Caio%20Cesar&rft.date=2024-07-01&rft.volume=17&rft.issue=7&rft.spage=1752&rft.epage=1764&rft.pages=1752-1764&rft.issn=1935-5130&rft.eissn=1935-5149&rft_id=info:doi/10.1007/s11947-023-03226-7&rft_dat=%3Cproquest_cross%3E3072087901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072087901&rft_id=info:pmid/&rfr_iscdi=true