Performance modeling and cost optimization of a solar desalination system using forward osmosis with energy storage
This study presents the design and performance evaluation of a solar-driven water desalination system based on forward osmosis (FO) with thermally responsive ionic liquids (ILs). FO is a two-step process involving dilution of the ILs with water, followed by heating above a critical temperature to in...
Gespeichert in:
Veröffentlicht in: | Renewable energy 2024-09, Vol.230, p.120866, Article 120866 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 120866 |
container_title | Renewable energy |
container_volume | 230 |
creator | Collado-Capell, Carlos Menon, Akanksha K. |
description | This study presents the design and performance evaluation of a solar-driven water desalination system based on forward osmosis (FO) with thermally responsive ionic liquids (ILs). FO is a two-step process involving dilution of the ILs with water, followed by heating above a critical temperature to induce phase separation of liquid water from the IL. This regeneration step can be achieved by integrating FO with low-grade solar energy, which is abundant in regions that face severe water scarcity. A system design is presented that couples an FO membrane module with a compound parabolic concentrator solar collector and thermal energy storage to minimize solar intermittency and produce clean water at a distributed scale of 10 m3/day. To determine the optimal sizing of components in the system, a technoeconomic analysis using the TRNSYS software is performed with the goal of minimizing the levelized cost of water (LCOW). Notably, over 96 % of the energy required for regeneration comes from solar energy and/or the thermal energy storage (TES) in all cases, with auxiliary heat from electricity being used to maintain a continuous process. To evaluate the potential of solar-FO in three different locations within the United States, a case study is presented for Phoenix, AZ; San Diego, CA; and Atlanta, GA. The simulation results reveal that for a small-scale desalination system, LCOW values as low as $1.31/m3 can be attained, with the potential to approach $1/m3 by lowering the costs of the solar collector and FO module based on a sensitivity analysis. |
doi_str_mv | 10.1016/j.renene.2024.120866 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153662590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148124009340</els_id><sourcerecordid>3153662590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-cbc310f0b7cb18898f63385bfcc4b05d1c51658da7eafbaab4b1b87187b85dec3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhH0AifL4Bxx85NJgJ7HjXpBQxUuqBAc4W35siqskLl6Xqvx6UoUz2sNKq5nRzkfINWcFZ1zebooEwzhFycq64CVTUp6QGVtINue14mfkHHHDGBeqqWcE3yC1MfVmcED76KELw5qawVMXMdO4zaEPPyaHONDYUkMxdiZRD2hG5XTHA2bo6Q6P1jFsb5KnEfuIAek-5E86_pPWB4o5JrOGS3Lamg7h6m9fkI_Hh_fl83z1-vSyvF_NXalUnjvrKs5aZhtnuVIL1cqqUsK2ztWWCc-d4FIobxowrTXG1pZb1XDVWCU8uOqC3Ey52xS_doBZ9wEddJ0ZIO5QV1xUUpZiwUZpPUldiogJWr1NoTfpoDnTR656oyeu-shVT1xH291kg7HGd4Ck0QUYUfqQwGXtY_g_4BdCYYjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153662590</pqid></control><display><type>article</type><title>Performance modeling and cost optimization of a solar desalination system using forward osmosis with energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Collado-Capell, Carlos ; Menon, Akanksha K.</creator><creatorcontrib>Collado-Capell, Carlos ; Menon, Akanksha K.</creatorcontrib><description>This study presents the design and performance evaluation of a solar-driven water desalination system based on forward osmosis (FO) with thermally responsive ionic liquids (ILs). FO is a two-step process involving dilution of the ILs with water, followed by heating above a critical temperature to induce phase separation of liquid water from the IL. This regeneration step can be achieved by integrating FO with low-grade solar energy, which is abundant in regions that face severe water scarcity. A system design is presented that couples an FO membrane module with a compound parabolic concentrator solar collector and thermal energy storage to minimize solar intermittency and produce clean water at a distributed scale of 10 m3/day. To determine the optimal sizing of components in the system, a technoeconomic analysis using the TRNSYS software is performed with the goal of minimizing the levelized cost of water (LCOW). Notably, over 96 % of the energy required for regeneration comes from solar energy and/or the thermal energy storage (TES) in all cases, with auxiliary heat from electricity being used to maintain a continuous process. To evaluate the potential of solar-FO in three different locations within the United States, a case study is presented for Phoenix, AZ; San Diego, CA; and Atlanta, GA. The simulation results reveal that for a small-scale desalination system, LCOW values as low as $1.31/m3 can be attained, with the potential to approach $1/m3 by lowering the costs of the solar collector and FO module based on a sensitivity analysis.</description><identifier>ISSN: 0960-1481</identifier><identifier>DOI: 10.1016/j.renene.2024.120866</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>case studies ; computer software ; desalination ; electricity ; Forward osmosis ; heat ; Ionic liquids ; Levelized cost of water ; liquids ; osmosis ; separation ; solar collectors ; Solar desalination ; solar energy ; systems engineering ; temperature ; thermal energy ; Thermal energy storage ; TRNSYS ; water shortages</subject><ispartof>Renewable energy, 2024-09, Vol.230, p.120866, Article 120866</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-cbc310f0b7cb18898f63385bfcc4b05d1c51658da7eafbaab4b1b87187b85dec3</cites><orcidid>0009-0006-1695-6455 ; 0000-0003-1979-507X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960148124009340$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Collado-Capell, Carlos</creatorcontrib><creatorcontrib>Menon, Akanksha K.</creatorcontrib><title>Performance modeling and cost optimization of a solar desalination system using forward osmosis with energy storage</title><title>Renewable energy</title><description>This study presents the design and performance evaluation of a solar-driven water desalination system based on forward osmosis (FO) with thermally responsive ionic liquids (ILs). FO is a two-step process involving dilution of the ILs with water, followed by heating above a critical temperature to induce phase separation of liquid water from the IL. This regeneration step can be achieved by integrating FO with low-grade solar energy, which is abundant in regions that face severe water scarcity. A system design is presented that couples an FO membrane module with a compound parabolic concentrator solar collector and thermal energy storage to minimize solar intermittency and produce clean water at a distributed scale of 10 m3/day. To determine the optimal sizing of components in the system, a technoeconomic analysis using the TRNSYS software is performed with the goal of minimizing the levelized cost of water (LCOW). Notably, over 96 % of the energy required for regeneration comes from solar energy and/or the thermal energy storage (TES) in all cases, with auxiliary heat from electricity being used to maintain a continuous process. To evaluate the potential of solar-FO in three different locations within the United States, a case study is presented for Phoenix, AZ; San Diego, CA; and Atlanta, GA. The simulation results reveal that for a small-scale desalination system, LCOW values as low as $1.31/m3 can be attained, with the potential to approach $1/m3 by lowering the costs of the solar collector and FO module based on a sensitivity analysis.</description><subject>case studies</subject><subject>computer software</subject><subject>desalination</subject><subject>electricity</subject><subject>Forward osmosis</subject><subject>heat</subject><subject>Ionic liquids</subject><subject>Levelized cost of water</subject><subject>liquids</subject><subject>osmosis</subject><subject>separation</subject><subject>solar collectors</subject><subject>Solar desalination</subject><subject>solar energy</subject><subject>systems engineering</subject><subject>temperature</subject><subject>thermal energy</subject><subject>Thermal energy storage</subject><subject>TRNSYS</subject><subject>water shortages</subject><issn>0960-1481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhH0AifL4Bxx85NJgJ7HjXpBQxUuqBAc4W35siqskLl6Xqvx6UoUz2sNKq5nRzkfINWcFZ1zebooEwzhFycq64CVTUp6QGVtINue14mfkHHHDGBeqqWcE3yC1MfVmcED76KELw5qawVMXMdO4zaEPPyaHONDYUkMxdiZRD2hG5XTHA2bo6Q6P1jFsb5KnEfuIAek-5E86_pPWB4o5JrOGS3Lamg7h6m9fkI_Hh_fl83z1-vSyvF_NXalUnjvrKs5aZhtnuVIL1cqqUsK2ztWWCc-d4FIobxowrTXG1pZb1XDVWCU8uOqC3Ey52xS_doBZ9wEddJ0ZIO5QV1xUUpZiwUZpPUldiogJWr1NoTfpoDnTR656oyeu-shVT1xH291kg7HGd4Ck0QUYUfqQwGXtY_g_4BdCYYjs</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Collado-Capell, Carlos</creator><creator>Menon, Akanksha K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0006-1695-6455</orcidid><orcidid>https://orcid.org/0000-0003-1979-507X</orcidid></search><sort><creationdate>202409</creationdate><title>Performance modeling and cost optimization of a solar desalination system using forward osmosis with energy storage</title><author>Collado-Capell, Carlos ; Menon, Akanksha K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-cbc310f0b7cb18898f63385bfcc4b05d1c51658da7eafbaab4b1b87187b85dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>case studies</topic><topic>computer software</topic><topic>desalination</topic><topic>electricity</topic><topic>Forward osmosis</topic><topic>heat</topic><topic>Ionic liquids</topic><topic>Levelized cost of water</topic><topic>liquids</topic><topic>osmosis</topic><topic>separation</topic><topic>solar collectors</topic><topic>Solar desalination</topic><topic>solar energy</topic><topic>systems engineering</topic><topic>temperature</topic><topic>thermal energy</topic><topic>Thermal energy storage</topic><topic>TRNSYS</topic><topic>water shortages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collado-Capell, Carlos</creatorcontrib><creatorcontrib>Menon, Akanksha K.</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collado-Capell, Carlos</au><au>Menon, Akanksha K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance modeling and cost optimization of a solar desalination system using forward osmosis with energy storage</atitle><jtitle>Renewable energy</jtitle><date>2024-09</date><risdate>2024</risdate><volume>230</volume><spage>120866</spage><pages>120866-</pages><artnum>120866</artnum><issn>0960-1481</issn><abstract>This study presents the design and performance evaluation of a solar-driven water desalination system based on forward osmosis (FO) with thermally responsive ionic liquids (ILs). FO is a two-step process involving dilution of the ILs with water, followed by heating above a critical temperature to induce phase separation of liquid water from the IL. This regeneration step can be achieved by integrating FO with low-grade solar energy, which is abundant in regions that face severe water scarcity. A system design is presented that couples an FO membrane module with a compound parabolic concentrator solar collector and thermal energy storage to minimize solar intermittency and produce clean water at a distributed scale of 10 m3/day. To determine the optimal sizing of components in the system, a technoeconomic analysis using the TRNSYS software is performed with the goal of minimizing the levelized cost of water (LCOW). Notably, over 96 % of the energy required for regeneration comes from solar energy and/or the thermal energy storage (TES) in all cases, with auxiliary heat from electricity being used to maintain a continuous process. To evaluate the potential of solar-FO in three different locations within the United States, a case study is presented for Phoenix, AZ; San Diego, CA; and Atlanta, GA. The simulation results reveal that for a small-scale desalination system, LCOW values as low as $1.31/m3 can be attained, with the potential to approach $1/m3 by lowering the costs of the solar collector and FO module based on a sensitivity analysis.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2024.120866</doi><orcidid>https://orcid.org/0009-0006-1695-6455</orcidid><orcidid>https://orcid.org/0000-0003-1979-507X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2024-09, Vol.230, p.120866, Article 120866 |
issn | 0960-1481 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153662590 |
source | Elsevier ScienceDirect Journals |
subjects | case studies computer software desalination electricity Forward osmosis heat Ionic liquids Levelized cost of water liquids osmosis separation solar collectors Solar desalination solar energy systems engineering temperature thermal energy Thermal energy storage TRNSYS water shortages |
title | Performance modeling and cost optimization of a solar desalination system using forward osmosis with energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20modeling%20and%20cost%20optimization%20of%20a%20solar%20desalination%20system%20using%20forward%20osmosis%20with%20energy%20storage&rft.jtitle=Renewable%20energy&rft.au=Collado-Capell,%20Carlos&rft.date=2024-09&rft.volume=230&rft.spage=120866&rft.pages=120866-&rft.artnum=120866&rft.issn=0960-1481&rft_id=info:doi/10.1016/j.renene.2024.120866&rft_dat=%3Cproquest_cross%3E3153662590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153662590&rft_id=info:pmid/&rft_els_id=S0960148124009340&rfr_iscdi=true |