Multi-output neural network model for predicting biochar yield and composition

In biomass pyrolysis for biochar production, existing prediction models face computational challenges and limited accuracy. This study curated a comprehensive dataset, revealing pyrolysis parameters' dominance in biochar yield (54.8 % importance). Pyrolysis temperature emerged as pivotal (PCC =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-10, Vol.945, p.173942, Article 173942
Hauptverfasser: Wang, Yifan, Xu, Liang, Li, Jianen, Ren, Zheyi, Liu, Wei, Ai, Yunhe, Zhou, Yutong, Li, Qiaona, Zhang, Boyu, Guo, Nan, Qu, Jianhua, Zhang, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 173942
container_title The Science of the total environment
container_volume 945
creator Wang, Yifan
Xu, Liang
Li, Jianen
Ren, Zheyi
Liu, Wei
Ai, Yunhe
Zhou, Yutong
Li, Qiaona
Zhang, Boyu
Guo, Nan
Qu, Jianhua
Zhang, Ying
description In biomass pyrolysis for biochar production, existing prediction models face computational challenges and limited accuracy. This study curated a comprehensive dataset, revealing pyrolysis parameters' dominance in biochar yield (54.8 % importance). Pyrolysis temperature emerged as pivotal (PCC = −0.75), influencing yield significantly. Artificial Neural Network (ANN) outperformed Random Forest (RF) in testing set predictions (R2 = 0.95, RMSE = 3.6), making it apt for complex multi-output predictions and software development. The trained ANN model, employed in Partial Dependence Analysis, uncovered nonlinear relationships between biomass characteristics and biochar yield. Findings indicated optimization opportunities, correlating low pyrolysis temperatures, elevated nitrogen content, high fixed carbon, and brief residence times with increased biochar yields. A multi-output ANN model demonstrated optimal fit for biochar yield. A user-friendly Graphical User Interface (GUI) for biochar synthesis prediction was developed, exhibiting robust performance with a mere 0.52 % prediction error for biochar yield. This study showcases practical machine learning application in biochar synthesis, offering valuable insights and predictive tools for optimizing biochar production processes. [Display omitted] •Created an optimization method using linear interpolation and Monte Carlo sampling for robust environmental data completion.•Revealed biomass-feedstock-biochar yield relationship using PDA and PDP, offering insights into subtle dynamics.•Enhanced biochar production modeling with a multi-output ANN, predicting yield and composition simultaneously.•Developed a GUI platform utilizing multi-output ANN model, enhancing accessibility for researchers in biochar production.
doi_str_mv 10.1016/j.scitotenv.2024.173942
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153661720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969724040907</els_id><sourcerecordid>3153661720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1951-544684f676a59b28d5fc92faf67eaa99348b126d5fa17f809cf3f505a3b157083</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2qVVmgf4Hm2Eu2njj-Oq5WFJCgvZSz5Th28TaJg-1Q8e_r1cJedy4jjZ55X-lB6CvgNWBg33frZHwO2U4v6wY37Ro4kW3zAa1AcFkDbthHtMK4FbVkkp-h85R2uAwX8BmdESEEBgor9PNhGbKvw5LnJVeTXaIeysr_QvxbjaG3Q-VCrOZoe2-yn_5UnQ_mScfq1duhr_TUVyaMc0g--zBdok9OD8l-edsX6PHH9e_tbX3_6-Zuu7mvDUgKNW1bJlrHONNUdo3oqTOycbpcrNZSklZ00LBy1sCdwNI44iimmnRAORbkAn075M4xPC82ZTX6ZOww6MmGJSkClDAGvMGnUcxkAQVhBeUH1MSQUrROzdGPOr4qwGrvXe3U0bvae1cH7-Xz6q1k6UbbH__eRRdgcwBssfLibdwH2ckUrdGarPrgT5b8B_olmGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069172836</pqid></control><display><type>article</type><title>Multi-output neural network model for predicting biochar yield and composition</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Yifan ; Xu, Liang ; Li, Jianen ; Ren, Zheyi ; Liu, Wei ; Ai, Yunhe ; Zhou, Yutong ; Li, Qiaona ; Zhang, Boyu ; Guo, Nan ; Qu, Jianhua ; Zhang, Ying</creator><creatorcontrib>Wang, Yifan ; Xu, Liang ; Li, Jianen ; Ren, Zheyi ; Liu, Wei ; Ai, Yunhe ; Zhou, Yutong ; Li, Qiaona ; Zhang, Boyu ; Guo, Nan ; Qu, Jianhua ; Zhang, Ying</creatorcontrib><description>In biomass pyrolysis for biochar production, existing prediction models face computational challenges and limited accuracy. This study curated a comprehensive dataset, revealing pyrolysis parameters' dominance in biochar yield (54.8 % importance). Pyrolysis temperature emerged as pivotal (PCC = −0.75), influencing yield significantly. Artificial Neural Network (ANN) outperformed Random Forest (RF) in testing set predictions (R2 = 0.95, RMSE = 3.6), making it apt for complex multi-output predictions and software development. The trained ANN model, employed in Partial Dependence Analysis, uncovered nonlinear relationships between biomass characteristics and biochar yield. Findings indicated optimization opportunities, correlating low pyrolysis temperatures, elevated nitrogen content, high fixed carbon, and brief residence times with increased biochar yields. A multi-output ANN model demonstrated optimal fit for biochar yield. A user-friendly Graphical User Interface (GUI) for biochar synthesis prediction was developed, exhibiting robust performance with a mere 0.52 % prediction error for biochar yield. This study showcases practical machine learning application in biochar synthesis, offering valuable insights and predictive tools for optimizing biochar production processes. [Display omitted] •Created an optimization method using linear interpolation and Monte Carlo sampling for robust environmental data completion.•Revealed biomass-feedstock-biochar yield relationship using PDA and PDP, offering insights into subtle dynamics.•Enhanced biochar production modeling with a multi-output ANN, predicting yield and composition simultaneously.•Developed a GUI platform utilizing multi-output ANN model, enhancing accessibility for researchers in biochar production.</description><identifier>ISSN: 0048-9697</identifier><identifier>ISSN: 1879-1026</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2024.173942</identifier><identifier>PMID: 38880151</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biochar ; biomass ; Biomass pyrolysis ; carbon ; computer software ; data collection ; environment ; Machine learning ; neural networks ; nitrogen content ; Prediction ; pyrolysis ; temperature ; user interface</subject><ispartof>The Science of the total environment, 2024-10, Vol.945, p.173942, Article 173942</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1951-544684f676a59b28d5fc92faf67eaa99348b126d5fa17f809cf3f505a3b157083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scitotenv.2024.173942$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38880151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yifan</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><creatorcontrib>Li, Jianen</creatorcontrib><creatorcontrib>Ren, Zheyi</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Ai, Yunhe</creatorcontrib><creatorcontrib>Zhou, Yutong</creatorcontrib><creatorcontrib>Li, Qiaona</creatorcontrib><creatorcontrib>Zhang, Boyu</creatorcontrib><creatorcontrib>Guo, Nan</creatorcontrib><creatorcontrib>Qu, Jianhua</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><title>Multi-output neural network model for predicting biochar yield and composition</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>In biomass pyrolysis for biochar production, existing prediction models face computational challenges and limited accuracy. This study curated a comprehensive dataset, revealing pyrolysis parameters' dominance in biochar yield (54.8 % importance). Pyrolysis temperature emerged as pivotal (PCC = −0.75), influencing yield significantly. Artificial Neural Network (ANN) outperformed Random Forest (RF) in testing set predictions (R2 = 0.95, RMSE = 3.6), making it apt for complex multi-output predictions and software development. The trained ANN model, employed in Partial Dependence Analysis, uncovered nonlinear relationships between biomass characteristics and biochar yield. Findings indicated optimization opportunities, correlating low pyrolysis temperatures, elevated nitrogen content, high fixed carbon, and brief residence times with increased biochar yields. A multi-output ANN model demonstrated optimal fit for biochar yield. A user-friendly Graphical User Interface (GUI) for biochar synthesis prediction was developed, exhibiting robust performance with a mere 0.52 % prediction error for biochar yield. This study showcases practical machine learning application in biochar synthesis, offering valuable insights and predictive tools for optimizing biochar production processes. [Display omitted] •Created an optimization method using linear interpolation and Monte Carlo sampling for robust environmental data completion.•Revealed biomass-feedstock-biochar yield relationship using PDA and PDP, offering insights into subtle dynamics.•Enhanced biochar production modeling with a multi-output ANN, predicting yield and composition simultaneously.•Developed a GUI platform utilizing multi-output ANN model, enhancing accessibility for researchers in biochar production.</description><subject>Biochar</subject><subject>biomass</subject><subject>Biomass pyrolysis</subject><subject>carbon</subject><subject>computer software</subject><subject>data collection</subject><subject>environment</subject><subject>Machine learning</subject><subject>neural networks</subject><subject>nitrogen content</subject><subject>Prediction</subject><subject>pyrolysis</subject><subject>temperature</subject><subject>user interface</subject><issn>0048-9697</issn><issn>1879-1026</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhq2qVVmgf4Hm2Eu2njj-Oq5WFJCgvZSz5Th28TaJg-1Q8e_r1cJedy4jjZ55X-lB6CvgNWBg33frZHwO2U4v6wY37Ro4kW3zAa1AcFkDbthHtMK4FbVkkp-h85R2uAwX8BmdESEEBgor9PNhGbKvw5LnJVeTXaIeysr_QvxbjaG3Q-VCrOZoe2-yn_5UnQ_mScfq1duhr_TUVyaMc0g--zBdok9OD8l-edsX6PHH9e_tbX3_6-Zuu7mvDUgKNW1bJlrHONNUdo3oqTOycbpcrNZSklZ00LBy1sCdwNI44iimmnRAORbkAn075M4xPC82ZTX6ZOww6MmGJSkClDAGvMGnUcxkAQVhBeUH1MSQUrROzdGPOr4qwGrvXe3U0bvae1cH7-Xz6q1k6UbbH__eRRdgcwBssfLibdwH2ckUrdGarPrgT5b8B_olmGA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Yifan</creator><creator>Xu, Liang</creator><creator>Li, Jianen</creator><creator>Ren, Zheyi</creator><creator>Liu, Wei</creator><creator>Ai, Yunhe</creator><creator>Zhou, Yutong</creator><creator>Li, Qiaona</creator><creator>Zhang, Boyu</creator><creator>Guo, Nan</creator><creator>Qu, Jianhua</creator><creator>Zhang, Ying</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241001</creationdate><title>Multi-output neural network model for predicting biochar yield and composition</title><author>Wang, Yifan ; Xu, Liang ; Li, Jianen ; Ren, Zheyi ; Liu, Wei ; Ai, Yunhe ; Zhou, Yutong ; Li, Qiaona ; Zhang, Boyu ; Guo, Nan ; Qu, Jianhua ; Zhang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1951-544684f676a59b28d5fc92faf67eaa99348b126d5fa17f809cf3f505a3b157083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochar</topic><topic>biomass</topic><topic>Biomass pyrolysis</topic><topic>carbon</topic><topic>computer software</topic><topic>data collection</topic><topic>environment</topic><topic>Machine learning</topic><topic>neural networks</topic><topic>nitrogen content</topic><topic>Prediction</topic><topic>pyrolysis</topic><topic>temperature</topic><topic>user interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yifan</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><creatorcontrib>Li, Jianen</creatorcontrib><creatorcontrib>Ren, Zheyi</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Ai, Yunhe</creatorcontrib><creatorcontrib>Zhou, Yutong</creatorcontrib><creatorcontrib>Li, Qiaona</creatorcontrib><creatorcontrib>Zhang, Boyu</creatorcontrib><creatorcontrib>Guo, Nan</creatorcontrib><creatorcontrib>Qu, Jianhua</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yifan</au><au>Xu, Liang</au><au>Li, Jianen</au><au>Ren, Zheyi</au><au>Liu, Wei</au><au>Ai, Yunhe</au><au>Zhou, Yutong</au><au>Li, Qiaona</au><au>Zhang, Boyu</au><au>Guo, Nan</au><au>Qu, Jianhua</au><au>Zhang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-output neural network model for predicting biochar yield and composition</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>945</volume><spage>173942</spage><pages>173942-</pages><artnum>173942</artnum><issn>0048-9697</issn><issn>1879-1026</issn><eissn>1879-1026</eissn><abstract>In biomass pyrolysis for biochar production, existing prediction models face computational challenges and limited accuracy. This study curated a comprehensive dataset, revealing pyrolysis parameters' dominance in biochar yield (54.8 % importance). Pyrolysis temperature emerged as pivotal (PCC = −0.75), influencing yield significantly. Artificial Neural Network (ANN) outperformed Random Forest (RF) in testing set predictions (R2 = 0.95, RMSE = 3.6), making it apt for complex multi-output predictions and software development. The trained ANN model, employed in Partial Dependence Analysis, uncovered nonlinear relationships between biomass characteristics and biochar yield. Findings indicated optimization opportunities, correlating low pyrolysis temperatures, elevated nitrogen content, high fixed carbon, and brief residence times with increased biochar yields. A multi-output ANN model demonstrated optimal fit for biochar yield. A user-friendly Graphical User Interface (GUI) for biochar synthesis prediction was developed, exhibiting robust performance with a mere 0.52 % prediction error for biochar yield. This study showcases practical machine learning application in biochar synthesis, offering valuable insights and predictive tools for optimizing biochar production processes. [Display omitted] •Created an optimization method using linear interpolation and Monte Carlo sampling for robust environmental data completion.•Revealed biomass-feedstock-biochar yield relationship using PDA and PDP, offering insights into subtle dynamics.•Enhanced biochar production modeling with a multi-output ANN, predicting yield and composition simultaneously.•Developed a GUI platform utilizing multi-output ANN model, enhancing accessibility for researchers in biochar production.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38880151</pmid><doi>10.1016/j.scitotenv.2024.173942</doi></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2024-10, Vol.945, p.173942, Article 173942
issn 0048-9697
1879-1026
1879-1026
language eng
recordid cdi_proquest_miscellaneous_3153661720
source Elsevier ScienceDirect Journals
subjects Biochar
biomass
Biomass pyrolysis
carbon
computer software
data collection
environment
Machine learning
neural networks
nitrogen content
Prediction
pyrolysis
temperature
user interface
title Multi-output neural network model for predicting biochar yield and composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-output%20neural%20network%20model%20for%20predicting%20biochar%20yield%20and%20composition&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Wang,%20Yifan&rft.date=2024-10-01&rft.volume=945&rft.spage=173942&rft.pages=173942-&rft.artnum=173942&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2024.173942&rft_dat=%3Cproquest_cross%3E3153661720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069172836&rft_id=info:pmid/38880151&rft_els_id=S0048969724040907&rfr_iscdi=true